This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324107 #11 Feb 16 2019 20:39:00 %S A324107 1,2,3,4,5,6,8,10,12,15,16,20,24,30,32,40,48,60,63,64,80,96,120,126, %T A324107 128,160,192,240,252,256,315,320,384,480,504,512,630,640,768,960,1008, %U A324107 1024,1260,1280,1536,1920,2016,2048,2520,2560,3072,3840,4032,4096,5040,5120,6144,7680,8064,8192,10080,10240,12288,15360,16128,16384 %N A324107 Fixed points of A324106, where A324106 is a multiplicative function with A324106(p^e) = A005940(p^e). %C A324107 Numbers n such that A324106(n) = n. %e A324107 For n = 63 = 3^2 * 7^1, we find that A005940(9) = 7 and A005940(7) = 9, thus A324106(63) = 7*9 = 63, and 63 is a member of this sequence. %o A324107 (PARI) %o A324107 A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940 %o A324107 A324106(n) = { my(f=factor(n)); prod(i=1, #f~, A005940(f[i,1]^f[i,2])); }; %o A324107 isA324107(n) = (n==A324106(n)); %o A324107 for(n=1,16384,if(isA324107(n), print1(n,", "))) %Y A324107 Cf. A005940, A070776, A324106, A324109. %Y A324107 Cf. A029747 (a subsequence). %K A324107 nonn %O A324107 1,2 %A A324107 _Antti Karttunen_, Feb 15 2019