This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324111 #14 Feb 16 2019 20:39:46 %S A324111 1,87,174,348,696,1392,2091,2784,4182,5568,8364,11136,16683,16728, %T A324111 22272,33215,33366,33456,44544,66430,66732,66912,89088,132860,133464, %U A324111 133824,178176,265720,266928,267179,267648,356352,531440,533856,534358,535296,712704,1062880,1066877,1067712,1068716,1070592,1319235,1425408 %N A324111 Numbers n for which A324108(n) = A324054(n-1) and which are neither prime powers nor of the form 2^i * p^j, where p is an odd prime, with either exponent i or j > 0. %C A324111 Setwise difference of A324109 and A070776. %C A324111 Setwise difference of A070537 and A324110. %C A324111 If an odd number n > 1 is present, then all 2^k * n are present also. Odd terms > 1 are given in A324112. %H A324111 Antti Karttunen, <a href="/A324111/b324111.txt">Table of n, a(n) for n = 1..173</a> %e A324111 87 is a term, as 87 = 3*29, A324054(3-1) = 4, A324054(29-1) = 156, and A324108(87) = 4*156 = 624 = A324054(87-1). %o A324111 (PARI) %o A324111 A000265(n) = (n/2^valuation(n, 2)); %o A324111 A324054(n) = { my(p=2,mp=p*p,m=1); while(n, if(!(n%2), p=nextprime(1+p); mp = p*p, if(3==(n%4),mp *= p,m *= (mp-1)/(p-1))); n>>=1); (m); }; %o A324111 A324108(n) = { my(f=factor(n)); prod(i=1, #f~, A324054((f[i,1]^f[i,2])-1)); }; %o A324111 isA324111(n) = ((1!=omega(n))&&(1!=omega(A000265(n)))&&(A324054(n-1)==A324108(n))); %o A324111 for(n=1,2^20,if(isA324111(n), print1(n,", "))) %Y A324111 Cf. A070537, A070776, A324109, A324110, A324112. %K A324111 nonn %O A324111 1,2 %A A324111 _Antti Karttunen_, Feb 15 2019