This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324116 #9 Feb 20 2019 21:43:08 %S A324116 1,1,1,3,1,4,1,2,5,5,1,3,1,6,7,8,1,2,1,4,9,7,1,13,7,8,5,5,1,3,1,7,11, %T A324116 9,10,12,1,10,13,18,1,4,1,6,8,11,1,12,9,2,15,7,1,11,13,23,17,12,1,19, %U A324116 1,13,11,13,16,5,1,8,19,3,1,13,1,14,7,9,13,6,1,17,10,15,1,26,19,16,21,28,1,18,17,10,23,17,22,23,1,2 %N A324116 a(n) = A002487(1+A323247(n)) = A324288(A156552(n)). %C A324116 Like A323902, this also has quite a moderate growth rate, even though a certain subset of terms of A156552 soon grow quite big. %H A324116 Antti Karttunen, <a href="/A324116/b324116.txt">Table of n, a(n) for n = 1..16384</a> %H A324116 Antti Karttunen, <a href="/A324116/a324116.txt">Data supplement: n, a(n) computed for n = 1..65537</a> %H A324116 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %H A324116 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A324116 <a href="/index/St#Stern">Index entries for sequences related to Stern's sequences</a> %F A324116 a(n) = A002487(1+A323247(n)) = A324288(A156552(n)). %F A324116 a(p) = 1 for all primes p. %o A324116 (PARI) %o A324116 A002487(n) = { my(s=sign(n), a=1, b=0); n = abs(n); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (s*b); }; \\ So we use this one, modified from the one given in A002487 %o A324116 A005187(n) = { my(s=n); while(n>>=1, s+=n); s; }; %o A324116 A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; %o A324116 A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n)))); %o A324116 A324288(n) = A002487(1+A005187(n)); %o A324116 A324116(n) = A324288(A156552(n)); %Y A324116 Cf. A002487, A005187, A156552, A323247, A323902, A324115, A324288. %K A324116 nonn %O A324116 1,4 %A A324116 _Antti Karttunen_, Feb 20 2019