This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324151 #24 Jan 25 2022 17:14:14 %S A324151 1,2,15,168,2310,36036,612612,11085360,210344706,4143153300, %T A324151 84106011990,1750346095680,37194854533200,804553314979680, %U A324151 17671438882589400,393345439598342880,8858467087621013610,201578121034100464500,4629577513083174001350,107211268724031397926000 %N A324151 a(n) = (2/((n+1)*(n+2)))*multinomial(3*n;n,n,n). %C A324151 a(n) is an integer, because as Fredes and Sepulveda show, it gives the number of spanning tree decorated quadrangulations rooted in the tree. %C A324151 For a direct proof, a(n) may also be written as (binomial(3*n,n)/(2*n+1))*(binomial(2*n+2,n)/(n+1)) = A001764(n)*A000108(n+1), and so is an integer. - _N. J. A. Sloane_, Mar 01 2019 %H A324151 Michael De Vlieger, <a href="/A324151/b324151.txt">Table of n, a(n) for n = 0..704</a> %H A324151 Luis Fredes and Avelio Sepulveda, <a href="https://arxiv.org/abs/1901.04981">Tree-decorated planar maps</a>, arXiv:1901.04981 [math.CO], 2019. See Remark 4.6. %p A324151 a:= n-> (2/((n+1)*(n+2)))*combinat[multinomial](3*n, n$3): %p A324151 seq(a(n), n=0..20); # _Alois P. Heinz_, Jan 25 2022 %t A324151 c[m_, n_] := m Product[1/(n + i), {i, m}] (Multinomial @@ ConstantArray[n, m + 1]); Array[c[2, #] &, 20, 0] (* _Michael De Vlieger_, Mar 01 2019 *) %o A324151 (Python) %o A324151 from sympy.ntheory import multinomial_coefficients %o A324151 def A324151(n): return 2*multinomial_coefficients(3,3*n)[(n,n,n)]//(n+1)//(n+2) # _Chai Wah Wu_, Jan 25 2022 %Y A324151 Cf. A000108, A001764, A324152. %K A324151 nonn %O A324151 0,2 %A A324151 _Michael De Vlieger_ and _N. J. A. Sloane_, Mar 01 2019