A324164 Number of primes <= A324154(n).
1, 2, 29523, 1431655764, 119209289550780, 204698073815493849906, 1288498953284574087356182400, 23736214210444926301853697505006152, 1090995446010964053236424684934590917505180, 1111111111111111111111111111111111111111111111111110
Offset: 2
Keywords
Examples
a(2) = 1, since there is only one prime <= A324154(2) = 2. a(3) = 2, since there are 2 primes <= A324154(3) = 3.
Formula
a(n) = pi(A324154(n)).
a(n) = numOfZerofreeNum_n(A324154(n)), where numOfZerofreeNum_n(x) is the number of base-n zerofree numbers <= x (cf. A324161).
a(n) = k*(n-1)^m + ((n-1)^m - 1)/(n-2) - 1,
where m = floor(log_n(A324154(n))), k = floor(A324154(n)/n^m), and provided A324154(n) - k*n^m < (n^(m+1)-1)/(n-1) - n^m.
With d := log(n-1)/log(n):
a(n) <= ((n - 1)*(A324154(n) + 1)^d - 1)/(n - 2) - 1,
a(n) >= (((n - 1)*A324154(n) + n)^d - 1)/(n - 2) - 1.
Comments