A324165 The number of primes <= A324155(n).
2, 94, 88572, 1431655764, 405311584472655, 375279801995072058162, 2392926627528494733661481601, 44505401644584236815975682821886536, 9818959014098676479127822164411318257546629, 1111111111111111111111111111111111111111111111111110
Offset: 2
Keywords
Examples
a(2) = 2, since there are 2 primes <= A324155(2) = 4. a(3) = 94, since there are 94 primes <= A324155(3) = 498.
Formula
a(n) = pi(A324155(n)).
a(n) = numOfZerofreeNum_n(A324155(n)), where numOfZerofreeNum_n(x) is the number of base-n zerofree numbers <= x (cf. A324161).
a(n) = k*(n-1)^m + ((n-1)^m - 1)/(n-2) - 1, where m = floor(log_n(A324155(n))), k = floor(A324155(n)/n^m), and provided A324155(n) - k*n^m < (n^(m+1)-1)/(n-1) - n^m.
With d := log(n-1)/log(n):
a(n) <= ((n - 1)*(A324155(n) + 1)^d - 1)/(n - 2) - 1.
a(n) >= (((n - 1)*A324155(n) + n)^d - 1)/(n - 2) - 1.
Comments