cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324173 Regular triangle read by rows where T(n,k) is the number of set partitions of {1,...,n} with k topologically connected components.

This page as a plain text file.
%I A324173 #13 Feb 19 2019 00:09:00
%S A324173 1,0,1,0,1,1,0,1,3,1,0,2,6,6,1,0,6,15,20,10,1,0,21,51,65,50,15,1,0,85,
%T A324173 203,252,210,105,21,1,0,385,912,1120,938,560,196,28,1,0,1907,4527,
%U A324173 5520,4620,2898,1302,336,36,1,0,10205,24370,29700,24780,15792,7812,2730,540,45,1
%N A324173 Regular triangle read by rows where T(n,k) is the number of set partitions of {1,...,n} with k topologically connected components.
%C A324173 A set partition is crossing if it contains a pair of blocks of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.
%C A324173 The topologically connected components of a set partition correspond to the blocks of its minimal non-crossing coarsening.
%H A324173 FindStat, <a href="http://www.findstat.org/StatisticsDatabase/St000925">The number of topologically connected components of a set partition</a>.
%e A324173 Triangle begins:
%e A324173      1
%e A324173      0     1
%e A324173      0     1     1
%e A324173      0     1     3     1
%e A324173      0     2     6     6     1
%e A324173      0     6    15    20    10     1
%e A324173      0    21    51    65    50    15     1
%e A324173      0    85   203   252   210   105    21     1
%e A324173      0   385   912  1120   938   560   196    28     1
%e A324173      0  1907  4527  5520  4620  2898  1302   336    36     1
%e A324173      0 10205 24370 29700 24780 15792  7812  2730   540    45     1
%e A324173 Row n = 4 counts the following set partitions:
%e A324173   {{1234}}    {{1}{234}}  {{1}{2}{34}}  {{1}{2}{3}{4}}
%e A324173   {{13}{24}}  {{12}{34}}  {{1}{23}{4}}
%e A324173               {{123}{4}}  {{12}{3}{4}}
%e A324173               {{124}{3}}  {{1}{24}{3}}
%e A324173               {{134}{2}}  {{13}{2}{4}}
%e A324173               {{14}{23}}  {{14}{2}{3}}
%t A324173 croXQ[stn_]:=MatchQ[stn,{___,{___,x_,___,y_,___},___,{___,z_,___,t_,___},___}/;x<z<y<t||z<x<t<y];
%t A324173 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
%t A324173 crosscmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],croXQ]]];
%t A324173 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A324173 Table[Length[Select[sps[Range[n]],Length[crosscmpts[#]]==k&]],{n,0,8},{k,0,n}]
%Y A324173 Row sums are A000110. Column k = 1 is A099947.
%Y A324173 Cf. A000108, A001263, A002061, A002662, A007297, A016098, A048993, A054726, A293510, A305078, A305079, A323818.
%Y A324173 Cf. A324166, A324167, A324169, A324170, A324171, A324172.
%K A324173 nonn,tabl
%O A324173 0,9
%A A324173 _Gus Wiseman_, Feb 17 2019