This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324177 #12 Jan 24 2020 15:37:18 %S A324177 1,2,3,6,12,18,24,28,35,36,45,50,60,72,91,105,120,128,144,162,171,190, %T A324177 210,242,264,288,300,324,351,364,392,420,465,495,528,544,576,612,629, %U A324177 666,702,760,798,840,860,900,945,966,1012,1056,1127,1173,1224,1248,1296 %N A324177 Integers k such that floor(sqrt(k)) + floor(sqrt(k/4)) divides k. %C A324177 k = 36*j^2 is a term for j > 0. %C A324177 Other infinite families of terms are 36*j^2-29*j+5, 36*j^2-21*j+3, 36*j^2-12*j, 36*j^2-8*j,36*j^2+9*j,36*j^2+13*j+1,36*j^2+22*j+2, and 36*j^2+30*j+6. These cover all terms <= 4676406 except 35. - _Robert Israel_, Jan 24 2020 %H A324177 Robert Israel, <a href="/A324177/b324177.txt">Table of n, a(n) for n = 1..3200</a> %p A324177 filter:= n -> n mod (floor(sqrt(n))+floor(sqrt(n/4))) = 0: %p A324177 select(filter, [$1..10000]); # _Robert Israel_, Jan 24 2020 %t A324177 Select[Range[1296], Mod[#, Floor@ Sqrt@ # + Floor@ Sqrt[#/4]] == 0 &] (* _Giovanni Resta_, Apr 05 2019 *) %o A324177 (PARI) is(n) = n%(floor(sqrt(n)) + floor(sqrt(n/4))) == 0; %Y A324177 Cf. A324174, A324175, A324176, A324178. %K A324177 nonn %O A324177 1,2 %A A324177 _Jinyuan Wang_, Mar 09 2019