This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324183 #12 Jul 25 2023 21:04:37 %S A324183 1,2,3,2,4,3,4,2,5,4,6,3,6,4,4,2,6,5,8,4,9,6,6,3,8,6,8,4,6,4,4,2,7,6, %T A324183 10,5,12,8,8,4,12,9,12,6,9,6,6,3,10,8,12,6,12,8,8,4,8,6,8,4,6,4,4,2,8, %U A324183 7,12,6,15,10,10,5,16,12,16,8,12,8,8,4,15,12,18,9,18,12,12,6,12,9,12,6,9,6,6,3,12,10,16,8,18,12,12,6,16,12 %N A324183 a(n) = d(A163511(n)), where d(n) is A000005, the number of divisors of n. %C A324183 For all i, j: A286531(i) = A286531(j) => a(i) = a(j). %H A324183 Antti Karttunen, <a href="/A324183/b324183.txt">Table of n, a(n) for n = 0..65537</a> %H A324183 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A324183 a(n) = A000005(A163511(n)). %F A324183 a(n) = A106737(A054429(n)). %F A324183 For all n >= 0, a(2^n) = n+2. %o A324183 (PARI) A324183(n) = if(!n,1,n = ((3<<#binary(n\2))-n-1); my(e=0,m=1); while(n>0, if(!(n%2), m *= (1+e); e=0, e++); n >>= 1); (m*(1+e))); %o A324183 (PARI) %o A324183 A163511(n) = if(!n,1,my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p)); %o A324183 A324183(n) = numdiv(A163511(n)); %o A324183 (PARI) %o A324183 A054429(n) = if(!n,n,((3<<#binary(n\2))-n-1)); \\ After code in A054429 %o A324183 A106737(n) = sum(k=0, n, (binomial(n+k, n-k)*binomial(n, k)) % 2); %o A324183 A324183(n) = A106737(A054429(n)); %o A324183 (Python) %o A324183 def A324183(n): %o A324183 if n: %o A324183 c = 1 %o A324183 while n: %o A324183 c *= (s:=(~n&n-1).bit_length()+1) %o A324183 n >>= s %o A324183 return c*(s+1)//s %o A324183 return 1 # _Chai Wah Wu_, Jul 25 2023 %Y A324183 Cf. A000005, A054429, A106737, A163511, A286531, A324184, A324187. %K A324183 nonn %O A324183 0,2 %A A324183 _Antti Karttunen_, Feb 17 2019