This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324196 #6 Feb 20 2019 21:43:46 %S A324196 1,2,3,4,5,4,6,7,8,9,10,7,11,12,8,13,14,7,15,13,16,17,18,13,19,20,21, %T A324196 22,23,7,24,25,26,27,19,13,28,29,30,25,31,32,33,34,21,35,36,25,37,38, %U A324196 39,40,41,13,42,43,44,45,46,13,47,48,49,43,50,51,52,53,54,38,55,25,56,57,21,58,37,59,60,43,49,61,62,25,63,64,65,66,67,13,68,69,70,71,72,43 %N A324196 Lexicographically earliest sequence such that a(i) = a(j) => A324195(i) = A324195(j) for all i, j >= 1. %C A324196 Restricted growth sequence transform of A324195. %C A324196 For all i, j: a(i) = a(j) => A324197(i) = A324197(j) => A324190(i) = A324190(j). %H A324196 Antti Karttunen, <a href="/A324196/b324196.txt">Table of n, a(n) for n = 1..65537</a> %H A324196 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %o A324196 (PARI) %o A324196 up_to = 65537; %o A324196 rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; %o A324196 A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1]))); %o A324196 A297167(n) = if(1==n, 0, (A061395(n) + (bigomega(n)-omega(n)) - 1)); %o A324196 A297112(n) = if(1==n, 0, 2^A297167(n)); %o A324196 A324195(n) = { my(v=0); fordiv(n, d, v = bitor(v,A297112(d))); (v); }; %o A324196 v324196 = rgs_transform(vector(up_to, n, A324195(n))); %o A324196 A324196(n) = v324196[n]; %Y A324196 Cf. A297112, A297167, A297168, A061395, A324190, A324195, A324197. %Y A324196 Cf. also A324181. %K A324196 nonn %O A324196 1,2 %A A324196 _Antti Karttunen_, Feb 20 2019