This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324236 #18 Sep 03 2019 03:54:08 %S A324236 1,1,4,21,149,1317,13985,173209,2451844,39044784,690862770, %T A324236 13446615722,285510978887,6567419023617,162686428939423, %U A324236 4317885767971448,122241788335870103,3677030054440996775,117111150680951037907,3937135961534144480556,139328182441566999124409 %N A324236 Expansion of e.g.f. 1 / (1 - Sum_{k>=1} p(k)*x^k/k!), where p(k) = number of partitions of k (A000041). %H A324236 Vaclav Kotesovec, <a href="/A324236/b324236.txt">Table of n, a(n) for n = 0..409</a> %F A324236 a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * p(k) * a(n-k). %F A324236 a(n) ~ c * d^n * n!, where d = 1.769410350604938716841596133605930996231892313627986058432895713767619380283... and c = 0.6329116440270047042622953043644713645679657251851049998748689226219... - _Vaclav Kotesovec_, Sep 03 2019 %p A324236 a:= proc(n) option remember; `if`(n=0, 1, add(a(n-k)* %p A324236 binomial(n, k)*combinat[numbpart](k), k=1..n)) %p A324236 end: %p A324236 seq(a(n), n=0..20); # _Alois P. Heinz_, Sep 02 2019 %t A324236 nmax = 20; CoefficientList[Series[1/(1 - Sum[PartitionsP[k] x^k/k!, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]! %t A324236 a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] PartitionsP[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}] %Y A324236 Cf. A000041, A055887, A218481, A300511, A302199, A324237. %K A324236 nonn %O A324236 0,3 %A A324236 _Ilya Gutkovskiy_, Sep 02 2019