A324243 Rotkiewicz numbers: numbers k such that a^sigma(k) == b^sigma(k) (mod k) for all pairs of numbers a, b such that gcd(a*b, k) = 1, where sigma(k) is the sum of divisors of k (A000203).
1, 2, 3, 6, 12, 14, 15, 24, 30, 35, 42, 48, 56, 60, 65, 70, 78, 88, 105, 119, 120, 126, 130, 140, 168, 182, 190, 195, 210, 224, 238, 240, 248, 255, 260, 264, 270, 280, 312, 315, 348, 357, 370, 377, 390, 418, 420, 440, 455, 459, 476, 480, 504, 510, 520, 546, 560
Offset: 1
Keywords
References
- Michal Křížek, Florian Luca, and Lawrence Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, Springer-Verlag, New York, 2001, chapter 12, pp. 144-146.
- Andrzej Rotkiewicz, Pseudoprime numbers and their generalizations, Student Association of Faculty of Sciences, University of Novi Sad, 1972.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Andrzej Rotkiewicz, Solved and unsolved problems on pseudoprime numbers, in: Applications of Fibonacci Numbers, Vol. 8 (ed. F. T. Howard), Kluwer Academic Publishers, Dordrecht, 1999, pp. 293-306.
Programs
-
Mathematica
aQ[n_] := Divisible[DivisorSigma[1, n], CarmichaelLambda[n]]; Select[Range[560], aQ]
Comments