cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324247 Partition array giving in row n, for n >= 1, the coefficients of the Witt symmetric function w_n in terms of the elementary symmetric functions (using partitions in the Abramowitz-Stegun order).

Table of values

n a(n)
1 1
2 -1
3 0
4 1
5 -1
6 0
7 -1
8 1
9 0
10 -1
11 0
12 1
13 -1
14 -1
15 1
16 1
17 -1
18 0
19 -1
20 1
21 1
22 0
23 -1
24 -1
25 0
26 1
27 1
28 -1
29 0
30 1
31 -1
32 -1
33 -1
34 1
35 2
36 1
37 1
38 -1
39 -3
40 -1
41 1
42 2
43 -1
44 0
45 -1
46 1
47 1
48 1
49 0
50 -1
51 -2
52 -1
53 -1
54 -1
55 1
56 2
57 -2
58 3
59 0
60 -1
61 -3
62 0
63 1
64 2
65 -1
66 0
67 1
68 -1
69 -1
70 -1
71 -1
72 1
73 2
74 2
75 1
76 1
77 2
78 0
79 -1
80 -3
81 -3
82 -3
83 -2
84 -1
85 1
86 4
87 2
88 5
89 1
90 -1
91 -5
92 -3
93 1
94 3
95 -1
96 0
97 -1
98 1
99 1
100 1
101 1
102 0
103 -1
104 -2
105 -2
106 -1
107 -1
108 -1
109 -1
110 -1
111 1
112 3
113 2
114 1
115 2
116 5
117 1
118 1
119 1
120 -1
121 -3
122 -3
123 -5
124 -5
125 -3
126 0
127 1
128 4
129 2
130 8
131 2
132 -1
133 -5
134 -4
135 1
136 3
137 -1
138 0

List of values

[1, -1, 0, 1, -1, 0, -1, 1, 0, -1, 0, 1, -1, -1, 1, 1, -1, 0, -1, 1, 1, 0, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, -1, 1, 2, 1, 1, -1, -3, -1, 1, 2, -1, 0, -1, 1, 1, 1, 0, -1, -2, -1, -1, -1, 1, 2, -2, 3, 0, -1, -3, 0, 1, 2, -1, 0, 1, -1, -1, -1, -1, 1, 2, 2, 1, 1, 2, 0, -1, -3, -3, -3, -2, -1, 1, 4, 2, 5, 1, -1, -5, -3, 1, 3, -1, 0, -1, 1, 1, 1, 1, 0, -1, -2, -2, -1, -1, -1, -1, -1, 1, 3, 2, 1, 2, 5, 1, 1, 1, -1, -3, -3, -5, -5, -3, 0, 1, 4, 2, 8, 2, -1, -5, -4, 1, 3, -1, 0]