A324253 Partition array giving in row n, for n >= 1, the coefficients of the Witt symmetric function w_n, multiplied by n!, in terms of the power sum symmetric functions (using partitions in the Abramowitz-Stegun order).
1, 1, -1, -2, 0, -2, 6, 0, -3, 6, -9, 24, 0, 0, 0, 0, 0, -24, 120, 0, 0, -40, 0, 0, -30, 80, 90, -90, -130, 720, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -720, 5040, 0, 0, 0, -1260, 0, 0, 0, 1260, 0, 0, 2520, 3780, 0, -945, 3780, 0, 0, 0, -6930, 6300, -8505
Offset: 1
Examples
The irregular triangle (partition array) begins: n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... --------------------------------------------------------------- 1: 1 2: 1 -1 3: -2 0 -2 4: 6 0 -3 6 -9 5: 24 0 0 0 0 0 -24 6: 120 0 0 -40 0 0 -30 80 90 -90 -130 7: 720 0 0 0 0 0 0 0 0 0 0 0 0 0 -720 ... n = 8: 5040 0 0 0 -1260 0 0 0 1260 0 0 2520 3780 0 -945 3780 0 0 0 -6930 6300 -8505; n = 9: 40320 0 0 0 0 0 0 0 0 0 0 -4480 0 0 0 0 0 0 0 0 13440 0 0 0 0 0 -13440 0 0 -35840; n = 10: 362880 0 0 0 0 -725760 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -22680 145152 0 0 0 113400 0 0 -226800 0 226800 -113400 -412776; ... --------------------------------------------------------------- w_1 = p_1; w_2 = (1/2)*(p_2 - (p_1)^2); w_3 = (1/3!)*(2*p_3 + 0 - 2*(p_1)^3); w_4 = (1/4!)*(6*p_4 + 0 - 3*(p_2)^2 + 6*(p_1)^2*p_2 - 9*(p_1)^4); w_5 = (1/5!)*(24*p_5 + 0 + 0 + 0 + 0 + 0 - 24*(p_1)^5) = (1/5)*(p_5 - (p_1)^5); w_6 = (1/6!)*(120*p_6 + 0 + 0 - 40*(p_3)^2 + 0 + 0 - 30*(p_2)^3 + 80*(p_1)^3*p_3 + 90*(p_1)^2*(p_2)^2 - 90*(p_1)^4*p_2 - 130*(p_1)^6) = (1/72)*(12*p_6 - 4*(p_3)^2 - 3*(p_2)^3 + 8*(p_1)^3*p_3 + 9*(p_1)^2*(p_2)^2 - 9*(p_1)^4*p_2 - 13*(p_1)^6); ... ---------------------------------------------------------------
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]
- H J. Borger, Witt vectors, semirings, and total positivity, arXiv:1310.3013 [math.CO], 2015, Section 4.5., pp. 295-296 [with theta -> w, psi-> p, and the n = 1..6 results on p. 295]
- SAGE, Witt symmetric functions
Formula
w_n is given by the recurrence given in the comment above in terms of the power sum symmetric functions {p_i}_{i>=1}, for n >= 1.
T(n, k) gives the coefficient of (p_1)^{a(1,k)}*...*(p_n)^{a(n,k)} for n!*w_n, corresponding to the k-th partition of n in Abramowitz-Stegun order, written as 1^{a(1,k)}*...*n^{a(n,k)}, with nonnegative integers a(n,j) satisfying Sum_{j=1..n} j*a(n,j) = n. The number of parts is Sum_{j=1..n} a(n,k) =: m(k).
Comments