A324251 Irregular triangle read by rows: parameters of the principal cycle of discriminant 4*D(n), with D(n) = A000037(n).
-2, 2, -1, 2, -4, 4, -2, 4, -1, 1, -1, 4, -1, 4, -6, 6, -3, 6, -2, 6, -1, 1, -1, 1, -6, 1, -1, 1, -1, 6, -1, 2, -1, 6, -1, 6, -8, 8, -4, 8, -2, 1, -3, 1, -2, 8, -2, 8, -1, 1, -2, 1, -1, 8, -1, 2, -4, 2, -1, 8, -1, 3, -1, 8, -1, 8, -10, 10, -5, 10, -3, 2, -3, 10, -2, 1, -1, 2, -10, 2, -1, 1, -2, 10, -2, 10
Offset: 1
Examples
The irregular triangle T(n, k) begins: n, D(n) \k 1 2 3 4 5 6 7 8 9 10 ... 2*A324252(n) ---------------------------------------------------------------------- 1, 2: -2 2 2 2, 3: -1 2 2 3, 5: -4 4 2 4, 6: -2 4 2 5, 7: -1 1 -1 4 4 6, 8: -1 4 2 7, 10: -6 6 2 8, 11: -3 6 2 9, 12: -2 6 2 10, 13: -1 1 -1 1 -6 1 -1 1 -1 6 10 11, 14: -1 2 -1 6 4 12, 15: -1 6 2 13, 17: -8 8 2 14, 18: -4 8 2 15, 19: -2 1 -3 1 -2 8 6 16, 20: -2 8 2 17, 21: -1 1 -2 1 -1 8 6 18, 22: -1 2 -4 2 -1 8 6 19, 23: -1 3 -1 8 4 20, 24: -1 8 2 ... -------------------------------------------------------------------- The forms for the cycle CR(5) for D(5) = 7 (discriminant 28) are: FR(5) = [1, 4, -3], the transformation with R(-1) produces FR1(5) = [-3, 2, 2], from this R(1) leads to FR2(5) = [2, 2, -3], then with R(-1) to FR3(5) = [-3, 4, 1], and with R(4) back to FR(5).
References
- D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, p. 21.
- A. Scholz and B. Schoeneberg, Einführung in die Zahlentheorie, 5. Aufl., de Gruyter, Berlin, New York, 1973, p. 112.
Links
- Wolfdieter Lang, Cycles of reduced Pell forms, general Pell equations and Pell graphs
Formula
T(n, k) = t_k(n), the k-th entry of the t-tuple for the R-transformations of the principal cycle for discriminant 4*D(n), with D(n) = A000037(n). See the comments above.
Comments