A324252 Triangle T(n, k) read by rows from upwards antidiagonals of array A, where A(n, k) is the number of families (also called classes) of proper solutions of the Pell equation x^2 - D(n)*y^2 = k, for k >= 1.
1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 2, 0, 0
Offset: 1
Examples
The array A(n, k) begins: n, D(n) \k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... ------------------------------------------------------------ 1, 2: 1 1 0 0 0 0 2 0 0 0 0 0 0 2 0 2, 3: 1 0 0 0 0 1 0 0 0 0 0 0 2 0 0 3, 5: 1 0 0 2 1 0 0 0 0 0 2 0 0 0 0 4, 6: 1 0 1 0 0 0 0 0 0 2 0 0 0 0 0 5, 7: 1 1 0 0 0 0 0 0 2 0 0 0 0 0 0 6, 8: 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 7, 10: 1 0 0 0 0 2 0 0 2 1 0 0 0 0 2 8, 11: 1 0 0 0 2 0 0 0 0 0 0 0 0 2 0 9, 12: 1 0 0 1 0 0 0 0 0 0 0 0 2 0 0 10, 13: 1 0 2 2 0 0 0 0 2 0 0 4 1 0 0 11, 14: 1 1 0 0 0 0 0 0 0 0 2 0 0 0 0 12, 15: 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 13, 17: 1 0 0 0 0 0 0 2 0 0 0 0 2 0 0 14, 18: 1 0 0 0 0 0 2 0 1 0 0 0 0 0 0 15, 19: 1 0 0 0 2 2 0 0 2 0 0 0 0 0 0 16, 20: 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 17, 21: 1 0 0 2 0 0 1 0 0 0 0 0 0 0 2 18, 22: 1 0 2 0 0 0 0 0 2 0 1 0 0 2 0 19, 23: 1 1 0 0 0 0 0 0 0 0 0 0 2 0 0 20, 24: 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 ... ------------------------------------------------------------- The triangle T(n, k) begins: n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... 1: 1 2: 1 1 3: 1 0 0 4: 1 0 0 0 5: 1 0 0 0 0 6: 1 1 1 2 0 0 7: 1 0 0 0 1 1 2 8: 1 0 0 0 0 0 0 0 9: 1 0 0 0 0 0 0 0 0 10: 1 0 0 0 0 0 0 0 0 0 11: 1 0 0 0 0 0 0 0 0 0 0 12: 1 1 2 1 2 2 0 0 0 0 0 0 13: 1 0 0 2 0 0 0 1 2 2 2 0 0 14: 1 0 0 0 0 0 0 0 0 0 0 0 2 2 15: 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 16: 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 17: 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 18: 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 19: 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20: 1 1 2 2 1 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 ... For this triangle more of the columns of the array have been used than those that are shown. ---------------------------------------------------------------------------- A(5, 9) = 2 = T(13, 9) because D(5) = 7, and the Pell form F(5) with disc(F(5)) = 4*7 = 28 representing k = +9 has 2 families (classes) of proper solutions generated from the two positive fundamental positive solutions (x10, y10) = (11, 4) and (x20, y20) = (4, 1). They are obtained from the trivial solutions of the parallel forms [9, 8, 1] and [9, 10, 2], respectively. See the W. Lang link in A324251, section 3.
References
- D. A. Buell, Binary Quadratic Forms, Springer, 1989, chapter 3, pp. 21-43.
- A. Scholz and B. Schoeneberg, Einführung in die Zahlentheorie, 5. Aufl., de Gruyter, Berlin, New York, 1973, pp. 112-126.
Formula
T(n, k) = A(n-k+1, k) for 1 <= k <= n, with A(n,k) the number of proper (positive) fundamental solutions of the Pell equation x^2 - D(n)*y^2 = k >= 1, with D(n) = A000037(n), for n >= 1.
Comments