This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324267 #17 Sep 08 2022 08:46:24 %S A324267 11,184877,3107227739,52223176609373,877714929273732011, %T A324267 14751754816303613908877,247932743197614838966495739, %U A324267 4167005614922312598509893885373,70034863369999307843155786531464011,1177075948659578366919919304234315632877,19783115469121533612823083746266142841763739 %N A324267 a(n) = 11*7^(5*n). %C A324267 x = a(n) and y = A324266(n) satisfy the Lebesgue-Ramanujan-Nagell equation x^2 + 7^(10*n+1) = 4*y^5 (see Theorem 2.1 in Chakraborty, Hoque and Sharma). %H A324267 K. Chakraborty, A. Hoque, R. Sharma, <a href="https://arxiv.org/abs/1812.11874">Complete solutions of certain Lebesgue-Ramanujan-Nagell type equations</a>, arXiv:1812.11874 [math.NT], 2018. %H A324267 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (16807). %F A324267 a(n) = 11*16807^n. %F A324267 O.g.f.: 11/(1 - 16807*x). %F A324267 E.g.f.: 11*exp(16807*x). %F A324267 a(n) = 16807*a(n-1) for n > 0. %F A324267 a(n) = 11*((7/2)*A109808(n))^5. %e A324267 For a(0) = 11 and A324266(0) = 2, 11^2 + 7 = 128 = 4*2^5. %p A324267 a:=n->11*16807^n: seq(a(n), n=0..20); %t A324267 11*16807^Range[0,20] %o A324267 (GAP) List([0..20], n->11*16807*n); %o A324267 (Magma) [11*16807^n: n in [0..20]]; %o A324267 (PARI) a(n) = 11*16807^n; %Y A324267 Cf. A324266: 2*49^n; A000290: n^2; A000584: n^5; A109808: 2*7^(n-1). %K A324267 nonn,easy %O A324267 0,1 %A A324267 _Stefano Spezia_, Feb 26 2019