This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324289 #14 Feb 24 2019 01:58:57 %S A324289 2,3,5,25,7,49,117649,184877,11,121,1771561,143,36226650889, %T A324289 59797108943,546826709,299019449675770681,13,169,4826809, %U A324289 23298085122481,8254129,68130645548641,17750592470222918406076697669,406193515012381653451063,8223741426987700773289,1553319630709265128413587,1977089672816762887718980502697827 %N A324289 a(n) = A276086(A283477(n)). %C A324289 All primes are present, and furthermore, each subsequence starting at each n = 2^k is converging towards p^A283477(0), p^A283477(1), p^A283477(2), p^A283477(3), ..., where p = A000040(2+k). For example, for a(2^4) = a(16), the prime is A000040(2+4) = 13, and its powers 13^1, 13^2, 13^6 and 13^12 occur in successive positions from a(16) to a(19). See also comments in A324342. %H A324289 Antti Karttunen, <a href="/A324289/b324289.txt">Table of n, a(n) for n = 0..511</a> %H A324289 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %H A324289 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %F A324289 a(n) = A276086(A283477(n)). %F A324289 For n >= 0, a(2^n) = A000040(2+n). %F A324289 A001221(a(n)) = A324341(n). %F A324289 A001222(a(n)) = A324342(n). %o A324289 (PARI) %o A324289 A002110(n) = prod(i=1,n,prime(i)); %o A324289 A030308(n,k) = bittest(n,k); %o A324289 A283477(n) = prod(i=0,#binary(n),if(0==A030308(n,i),1,A030308(n,i)*A002110(1+i))); %o A324289 A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; }; %o A324289 A324289(n) = A276086(A283477(n)); %Y A324289 Cf. A000040, A001222, A276086, A283477, A324341, A324342. %K A324289 nonn %O A324289 0,1 %A A324289 _Antti Karttunen_, Feb 23 2019