This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324297 #37 Aug 21 2021 15:45:56 %S A324297 36,96,156,216,256,276,336,396,416,456,516,576,636,676,696,736,756, %T A324297 816,876,896,936,996,1056,1116,1176,1196,1216,1236,1296,1356,1376, %U A324297 1416,1456,1476,1536,1596,1656,1696,1716,1776,1836,1856,1896,1956,1976,2016,2076,2116 %N A324297 Positive integers k that are the product of two integers ending with 6. %C A324297 All the terms end with 6 (A017341). %H A324297 Stefano Spezia, <a href="/A324297/b324297.txt">Table of n, a(n) for n = 1..10000</a> %F A324297 Conjecture: Lim_{n->infinity} a(n)/a(n-1) = 1. %F A324297 The conjecture is true since it can be proved that a(n) = (sqrt(a(n-1)) + g(n-1))^2 where [g(n): n > 1] is a bounded sequence of positive real numbers. - _Stefano Spezia_, Aug 18 2021 %e A324297 36 = 6*6, 96 = 6*16, 216 = 6*36, 256 = 16*16, 276 = 6*46, ... %t A324297 a={}; For[n=0,n<=250,n++,For[k=0,k<=n,k++,If[Mod[10*n+6,10*k+6]==0 && Mod[(10*n+6)/(10*k+6),10]==6 && 10*n+6>Max[a],AppendTo[a,10*n+6]]]]; a %o A324297 (PARI) isok6(n) = (n%10) == 6; \\ A017341 %o A324297 isok(n) = {if (isok6(n), my(d=divisors(n)); fordiv(n, d, if (isok6(d) && isok6(n/d), return(1)));); return (0);} \\ _Michel Marcus_, Apr 14 2019 %o A324297 (Python) %o A324297 def aupto(lim): return sorted(set(a*b for a in range(6, lim//6+1, 10) for b in range(a, lim//a+1, 10))) %o A324297 print(aupto(2117)) # _Michael S. Branicky_, Aug 18 2021 %Y A324297 Cf. A000400, A017341 (supersequence), A324298, A053742 (ending with 5). %K A324297 nonn,base %O A324297 1,1 %A A324297 _Stefano Spezia_, Mar 16 2019