cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A324321 Numbers k such that Rd(k) == k (mod Ld(k)), where Rd(k) = A067079 and Ld(k) = A067080.

Original entry on oeis.org

21, 23, 25, 27, 29, 31, 34, 37, 41, 45, 49, 51, 56, 61, 67, 71, 78, 81, 89, 91, 101, 109, 114, 118, 145, 175, 201, 209, 251, 267, 301, 365, 401, 501, 529, 601, 701, 801, 901, 1001, 1639, 2001, 3001, 4001, 5001, 6001, 7001, 8001, 9001, 10001, 20001, 30001, 40001
Offset: 1

Views

Author

Paolo P. Lava, Feb 22 2019

Keywords

Comments

All numbers of the form d*10^k+1, where d = 1,2,3,4,5,6,7,8,9 and k>0, are part of the sequence except 11.

Examples

			Rd(1639) = 1639*639*39*9 = 367609671, Ld(1639) = 1639*163*16*1 = 4274512 and 367609671 == 1639 (mod 4274512).
		

Crossrefs

Programs

  • Maple
    op(select(n->n=mul(n mod 10^k, k=1..ilog10(n)+1) mod mul(trunc(n/10^k), k=0..ilog10(n)),[$1..40001]));
  • Mathematica
    Select[Range[10^5], Mod[Times @@ Map[FromDigits, NestWhileList[Rest@ # &, IntegerDigits@ #, Length@ # > 1 &]], Times @@ Map[FromDigits, NestWhileList[Most@ # &, IntegerDigits@ #, Length@ # > 1 &]]] == # &] (* Michael De Vlieger, Feb 25 2019 *)
Showing 1-1 of 1 results.