cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A326293 Number of non-nesting, topologically connected simple graphs with vertices {1..n}.

Original entry on oeis.org

1, 1, 2, 4, 8, 27, 192, 1750
Offset: 0

Views

Author

Gus Wiseman, Jun 29 2019

Keywords

Comments

Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d. A graph with positive integer vertices is topologically connected if the graph whose vertices are the edges and whose edges are crossing pairs of edges is connected.

Crossrefs

The inverse binomial transform is the covering case A326349.
Topologically connected simple graphs are A324328.
Non-crossing simple graphs are A054726.
Topologically connected set partitions are A099947.

Programs

  • Mathematica
    croXQ[eds_]:=MatchQ[eds,{_,{x_,y_},_,{z_,t_},_}/;x_,{x_,y_},_,{z_,t_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],!nesXQ[#]&&Length[csm[Union[Subsets[#,{1}],Select[Subsets[#,{2}],croXQ]]]]<=1&]],{n,0,5}]

A324327 Number of topologically connected chord graphs covering {1,...,n}.

Original entry on oeis.org

1, 0, 1, 0, 1, 11, 257
Offset: 0

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

A graph is topologically connected if the graph whose vertices are the edges and whose edges are crossing pairs of edges is connected, where two edges cross each other if they are of the form {{x,y},{z,t}} with x < z < y < t or z < x < t < y.
Covering means there are no isolated vertices.

Examples

			The a(0) = 1 through a(5) = 11 graphs:
  {}  {{12}}  {{13}{24}}  {{13}{14}{25}}
                          {{13}{24}{25}}
                          {{13}{24}{35}}
                          {{14}{24}{35}}
                          {{14}{25}{35}}
                          {{13}{14}{24}{25}}
                          {{13}{14}{24}{35}}
                          {{13}{14}{25}{35}}
                          {{13}{24}{25}{35}}
                          {{14}{24}{25}{35}}
                          {{13}{14}{24}{25}{35}}
		

Crossrefs

Cf. A000108, A000699 (the case with disjoint edges), A001764, A002061, A007297, A016098, A054726, A099947, A136653 (the case with set-theoretical connectedness also), A268814.
Cf. A324167, A324169 (non-crossing covers), A324172, A324173, A324323, A324328 (non-covering case).

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    crosscmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],croXQ]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],Length[crosscmpts[#]]<=1]&]],{n,0,5}]

Formula

Inverse binomial transform of A324328.

A324328 Number of topologically connected chord graphs on a subset of {1,...,n}.

Original entry on oeis.org

1, 1, 2, 4, 8, 27, 354
Offset: 0

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

A graph is topologically connected if the graph whose vertices are the edges and whose edges are crossing pairs of edges is connected, where two edges cross each other if they are of the form {{x,y},{z,t}} with x < z < y < t or z < x < t < y.

Examples

			The a(0) = 1 through a(5) = 27 graphs:
  {}  {}  {}      {}      {}          {}
          {{12}}  {{12}}  {{12}}      {{12}}
                  {{13}}  {{13}}      {{13}}
                  {{23}}  {{14}}      {{14}}
                          {{23}}      {{15}}
                          {{24}}      {{23}}
                          {{34}}      {{24}}
                          {{13}{24}}  {{25}}
                                      {{34}}
                                      {{35}}
                                      {{45}}
                                      {{13}{24}}
                                      {{13}{25}}
                                      {{14}{25}}
                                      {{14}{35}}
                                      {{24}{35}}
                                      {{13}{14}{25}}
                                      {{13}{24}{25}}
                                      {{13}{24}{35}}
                                      {{14}{24}{35}}
                                      {{14}{25}{35}}
                                      {{13}{14}{24}{25}}
                                      {{13}{14}{24}{35}}
                                      {{13}{14}{25}{35}}
                                      {{13}{24}{25}{35}}
                                      {{14}{24}{25}{35}}
                                      {{13}{14}{24}{25}{35}}
		

Crossrefs

Cf. A000108, A000699, A001764, A002061, A007297, A016098, A054726 (non-crossing chord graphs), A099947, A136653, A268814.
Cf. A324168, A324169, A324172, A324173, A324323, A324327 (covering case).

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    crosscmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],croXQ]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[crosscmpts[#]]<=1&]],{n,0,5}]

Formula

Binomial transform of A324327.

A322402 Triangle read by rows: The number of chord diagrams with n chords and k topologically connected components, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 4, 6, 5, 0, 27, 36, 28, 14, 0, 248, 310, 225, 120, 42, 0, 2830, 3396, 2332, 1210, 495, 132, 0, 38232, 44604, 29302, 14560, 6006, 2002, 429, 0, 593859, 678696, 430200, 204540, 81900, 28392, 8008, 1430, 0, 10401712, 11701926, 7204821, 3289296, 1263780, 431256, 129948, 31824, 4862
Offset: 0

Views

Author

R. J. Mathar, Dec 06 2018

Keywords

Comments

If all subsets are allowed instead of just pairs (chords), we get A324173. The rightmost column is A000108 (see Riordan). - Gus Wiseman, Feb 27 2019

Examples

			From _Gus Wiseman_, Feb 27 2019: (Start)
Triangle begins:
  1
  0      1
  0      1      2
  0      4      6      5
  0     27     36     28     14
  0    248    310    225    120     42
  0   2830   3396   2332   1210    495    132
  0  38232  44604  29302  14560   6006   2002    429
  0 593859 678696 430200 204540  81900  28392   8008   1430
Row n = 3 counts the following chord diagrams (see link for pictures):
  {{1,3},{2,5},{4,6}}  {{1,2},{3,5},{4,6}}  {{1,2},{3,4},{5,6}}
  {{1,4},{2,5},{3,6}}  {{1,3},{2,4},{5,6}}  {{1,2},{3,6},{4,5}}
  {{1,4},{2,6},{3,5}}  {{1,3},{2,6},{4,5}}  {{1,4},{2,3},{5,6}}
  {{1,5},{2,4},{3,6}}  {{1,5},{2,3},{4,6}}  {{1,6},{2,3},{4,5}}
                       {{1,5},{2,6},{3,4}}  {{1,6},{2,5},{3,4}}
                       {{1,6},{2,4},{3,5}}
(End)
		

Crossrefs

Cf. A000699 (k = 1 column), A001147 (row sums), A000108 (diagonal), A002694 (subdiagonal k = n - 1).

Formula

The g.f. satisfies g(z,w) = 1+w*A000699(w*g^2), where A000699(z) is the g.f. of A000699.

Extensions

Offset changed to 0 by Gus Wiseman, Feb 27 2019

A326349 Number of non-nesting, topologically connected simple graphs covering {1..n}.

Original entry on oeis.org

1, 0, 1, 0, 1, 11, 95, 797
Offset: 0

Views

Author

Gus Wiseman, Jun 30 2019

Keywords

Comments

Covering means there are no isolated vertices. Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d. A graph with positive integer vertices is topologically connected if the graph whose vertices are the edges and whose edges are crossing pairs of edges is connected.

Examples

			The a(5) = 11 edge-sets:
  {13,14,25}
  {13,24,25}
  {13,24,35}
  {14,24,35}
  {14,25,35}
  {13,14,24,25}
  {13,14,24,35}
  {13,14,25,35}
  {13,24,25,35}
  {14,24,25,35}
  {13,14,24,25,35}
		

Crossrefs

The binomial transform is the non-covering case A326293.
Topologically connected, covering simple graphs are A324327.
Non-crossing, covering simple graphs are A324169.

Programs

  • Mathematica
    croXQ[eds_]:=MatchQ[eds,{_,{x_,y_},_,{z_,t_},_}/;x_,{x_,y_},_,{z_,t_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&!nesXQ[#]&&Length[csm[Union[Subsets[#,{1}],Select[Subsets[#,{2}],croXQ]]]]<=1&]],{n,0,5}]
Showing 1-5 of 5 results.