A324327 Number of topologically connected chord graphs covering {1,...,n}.
1, 0, 1, 0, 1, 11, 257
Offset: 0
Examples
The a(0) = 1 through a(5) = 11 graphs: {} {{12}} {{13}{24}} {{13}{14}{25}} {{13}{24}{25}} {{13}{24}{35}} {{14}{24}{35}} {{14}{25}{35}} {{13}{14}{24}{25}} {{13}{14}{24}{35}} {{13}{14}{25}{35}} {{13}{24}{25}{35}} {{14}{24}{25}{35}} {{13}{14}{24}{25}{35}}
Links
- Gus Wiseman, The a(5) = 11 topologically connected chord graphs.
- Gus Wiseman, The a(6) = 257 topologically connected chord graphs.
Crossrefs
Programs
-
Mathematica
croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; crosscmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],croXQ]]]; Table[Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],Length[crosscmpts[#]]<=1]&]],{n,0,5}]
Formula
Inverse binomial transform of A324328.
Comments