This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324345 #10 Feb 24 2019 17:52:32 %S A324345 1,2,3,4,3,5,6,7,3,5,8,9,6,9,10,11,3,5,8,9,8,12,13,14,6,9,13,15,10,14, %T A324345 16,17,3,5,8,9,8,12,13,14,8,12,18,19,13,19,20,21,6,9,13,15,13,19,22, %U A324345 23,10,14,20,23,16,21,24,25,3,5,8,9,8,12,13,14,8,12,18,19,13,19,20,21,8,12,18,19,18,26,27,28,13,19,27,29,20,28,30,31,6,9,13,15,13,19 %N A324345 Lexicographically earliest positive sequence such that a(i) = a(j) => A005811(i) = A005811(j) and A278222(i) = A278222(j), for all i, j >= 0. %C A324345 Restricted growth sequence transform of the ordered pair [A005811(n), A278222(n)], or equally, of [A005811(n), A286622(n)]. %C A324345 For all i, j >= 1: %C A324345 a(i) = a(j) => A033264(i) = A033264(j). %H A324345 Antti Karttunen, <a href="/A324345/b324345.txt">Table of n, a(n) for n = 0..65537</a> %H A324345 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A324345 a(2^n) = 3 for all n >= 1. %o A324345 (PARI) %o A324345 up_to = 65537; %o A324345 rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; %o A324345 A005811(n) = hammingweight(bitxor(n, n>>1)); \\ From A005811 %o A324345 A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; %o A324345 A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523 %o A324345 A278222(n) = A046523(A005940(1+n)); %o A324345 Aux324345(n) = [A005811(n), A278222(n)]; %o A324345 v324345 = rgs_transform(vector(1+up_to,n,Aux324345(n-1))); %o A324345 A324345(n) = v324345[1+n]; %Y A324345 Cf. A005811, A278222, A286622. %Y A324345 Cf. also A033264, A323889, A324343, A324346. %K A324345 nonn %O A324345 0,2 %A A324345 _Antti Karttunen_, Feb 24 2019