This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324361 #14 Oct 28 2021 09:27:13 %S A324361 0,1,5,49,679,12151,266321,6906257,206788751,7020426511,266464077769, %T A324361 11180868467209,513915970996583,25678820830238759,1385874945753239969, %U A324361 80341660921985676961,4979071555472111291551,328496221117149603559327,22987138271050177264124441 %N A324361 Total number of occurrences of n in the (signed) displacement sets of all permutations of [2n] divided by n!. %H A324361 Alois P. Heinz, <a href="/A324361/b324361.txt">Table of n, a(n) for n = 0..366</a> %H A324361 Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a> %F A324361 a(n) = n! [x^n] (1-exp(-x))/(1-x)^(n+1). %F A324361 a(n) = -1/n! * Sum_{j=1..n} (-1)^j * binomial(n,j) * (2n-j)!. %F A324361 a(n) = (8*n-12)*a(n-1) - (16*n^2-64*n+59)*a(n-2) - (4*n-10)*a(n-3) for n > 2. %F A324361 a(n) = A324362(n,n) = A306234(2n,n). %p A324361 a:= proc(s) option remember; `if`(n<3, (3*n-1)*n/2, %p A324361 (8*n-12)*a(n-1)-(16*n^2-64*n+59)*a(n-2)-(4*n-10)*a(n-3)) %p A324361 end: %p A324361 seq(a(n), n=0..20); %t A324361 A[n_, k_] := -Sum[(-1)^j*Binomial[n, j]*(n+k-j)!, {j, 1, n}]/k!; %t A324361 a[n_] := A[n, n]; %t A324361 a /@ Range[0, 20] (* _Jean-François Alcover_, Oct 28 2021, after _Alois P. Heinz_ in A324362 *) %Y A324361 Main diagonal of A324362. %Y A324361 Cf. A000142, A306234. %K A324361 nonn %O A324361 0,3 %A A324361 _Alois P. Heinz_, Feb 23 2019