This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324381 #8 Feb 26 2019 19:12:29 %S A324381 1,1,1,1,1,1,2,2,1,1,1,2,2,2,1,1,1,2,2,2,2,2,2,2,1,3,3,2,2,2,2,2,2,2, %T A324381 2,3,3,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,2,3,2,2,2,2,2,2,3,3,3,3,2,3,3,2, %U A324381 2,3,2,2,2,2,2,3,3,3,3,3,3,3,2,3,2,3,2,3,2,3,4,3,3,3,3,3,2,3,3,3,2,3,3,3,4 %N A324381 Number of nonzero digits when the n-th highly composite number is written in primorial base: a(n) = A267263(A002182(n)). %H A324381 Antti Karttunen, <a href="/A324381/b324381.txt">Table of n, a(n) for n = 1..10000</a> %H A324381 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %H A324381 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a> %F A324381 a(n) = A267263(A002182(n)). %F A324381 a(n) <= A324382(n). %e A324381 For n=12, A002182(12) = 240, which is written as "11000" in primorial base (A049345) because 240 = 1*A002110(4) + 1*A002110(3) = 210+30, thus a(12) = 2, as there are two nonzero digits. %e A324381 For n=18, A002182(18) = 2520 = "110000" in primorial base because 2520 = 1*A002110(5) + 1*A002110(4) = 2310+210, thus a(18) = 2. %e A324381 For n=26, A002182(26) = 45360 = "1670000" in primorial base because 45360 = 1*A002110(6) + 6*A002110(5) + 7*A002110(4), thus a(26) = 3, as there are three nonzero digits. %o A324381 (PARI) %o A324381 A267263(n) = { my(s=0); forprime(p=2, , if(n%p, s++, if(n==0, return(s))); n\=p); }; \\ From A267263 %o A324381 A324381(n) = A267263(A002182(n)); %Y A324381 Cf. A002100, A002182, A049345, A267263, A324382. %Y A324381 Cf. also A324341. %K A324381 nonn %O A324381 1,7 %A A324381 _Antti Karttunen_, Feb 26 2019