cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324383 a(n) is the minimal number of primorials that add to A322827(n).

This page as a plain text file.
%I A324383 #24 Feb 28 2019 18:54:05
%S A324383 1,1,1,2,2,1,2,2,2,6,1,6,4,2,4,4,8,6,6,10,8,1,10,22,4,6,2,12,8,4,4,2,
%T A324383 8,16,6,4,24,6,8,14,26,18,1,26,20,6,18,30,6,12,2,14,16,2,10,16,8,6,4,
%U A324383 8,6,2,4,4,12,14,14,18,18,12,16,32,42,28,6,22,32,24,24,42,46,32,18,20,30,1,24,54,38,26,14,44,34,8
%N A324383 a(n) is the minimal number of primorials that add to A322827(n).
%C A324383 a(n) is odd if and only if n is one of the terms of A000975: 1, 2, 5, 10, 21, 42, 85, ..., in which case A322827(n) will be one of primorials (A002110), and a(n) = 1. This happens because A276150 is even for all multiples of four, and a product of two or more primorials > 1 is always a multiple of 4. Note that the same property does not hold in factorial system: 36 = 3!*3!, but A034968(36) = 3 as 36 = 4!+3!+3!.
%H A324383 Antti Karttunen, <a href="/A324383/b324383.txt">Table of n, a(n) for n = 0..10922</a>
%H A324383 Antti Karttunen, <a href="/A324383/a324383.txt">Data supplement: n, a(n) computed for n = 0..65537</a>
%H A324383 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%H A324383 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%H A324383 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a>
%F A324383 a(n) = A276150(A322827(n)).
%F A324383 a(n) = A324386(A003188(n)).
%o A324383 (PARI)
%o A324383 A276150(n) = { my(s=0,m); forprime(p=2, , if(!n, return(s)); m = n%p; s += m; n = (n-m)/p); };
%o A324383 A322827(n) = if(!n,1,my(bits = Vecrev(binary(n)), rl=1, o = List([])); for(i=2,#bits,if(bits[i]==bits[i-1], rl++, listput(o,rl))); listput(o,rl); my(es=Vecrev(Vec(o)), m=1); for(i=1,#es,m *= prime(i)^es[i]); (m));
%o A324383 A324383(n) = A276150(A322827(n));
%Y A324383 Cf. A000975 (positions of ones), A002110, A003188, A025487, A276150, A322827, A324342, A324382.
%Y A324383 Cf. also A324386, A324387 (permutations of this sequence).
%K A324383 nonn
%O A324383 0,4
%A A324383 _Antti Karttunen_, Feb 27 2019