cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324392 a(n) is the number of divisors d of n such that A000120(d) divides n, where A000120(d) gives the binary weight of d.

This page as a plain text file.
%I A324392 #14 Dec 04 2020 09:22:06
%S A324392 1,2,1,3,1,4,1,4,1,4,1,6,1,2,1,5,1,6,1,6,3,2,1,8,1,2,1,3,1,6,1,6,2,4,
%T A324392 1,9,1,2,2,8,1,8,1,3,1,2,1,10,1,4,1,3,1,6,2,4,2,2,1,12,1,2,3,7,1,8,1,
%U A324392 6,2,4,1,12,1,2,2,3,1,6,1,10,2,2,1,12,1,2,1,4,1,8,1,6,1,2,1,12,1,2,2,6,1,6,1,4,4
%N A324392 a(n) is the number of divisors d of n such that A000120(d) divides n, where A000120(d) gives the binary weight of d.
%C A324392 Number of such positive integers k that both k and A000120(k) [the Hamming weight of k] divide n.
%H A324392 Antti Karttunen, <a href="/A324392/b324392.txt">Table of n, a(n) for n = 1..65537</a>
%H A324392 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F A324392 a(n) = Sum_{d|n} [A000120(d) does divide n], where [ ] is the Iverson bracket.
%F A324392 a(n) = A000005(n) - A324393(n).
%F A324392 a(p) = 1 for all odd primes p.
%t A324392 a[n_] := DivisorSum[n, 1 &, Divisible[n, DigitCount[#, 2, 1]] &]; Array[a, 100] (* _Amiram Eldar_, Dec 04 2020 *)
%o A324392 (PARI) A324392(n) = sumdiv(n, d, !(n%hammingweight(d)));
%Y A324392 Cf. A000005, A000120, A324393.
%Y A324392 Cf. also A093653, A192895, A266342, A292257.
%K A324392 nonn,base
%O A324392 1,2
%A A324392 _Antti Karttunen_, Mar 05 2019