This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324396 #8 Mar 05 2019 18:19:44 %S A324396 0,1,1,1,1,1,1,1,6,1,1,1,1,1,2,3,1,1,1,1,3,3,1,1,4,1,2,1,1,1,1,1,2,1, %T A324396 2,1,1,1,6,1,1,1,1,1,2,1,1,1,12,1,2,1,1,1,1,1,6,1,1,1,1,3,2,1,2,3,1,1, %U A324396 2,1,1,1,1,1,2,1,10,1,1,1,6,1,1,1,12,5,6,15,1,3,3,1,2,3,4,5,1,1,2,3,1,3,1,1,6 %N A324396 a(1) = 0; for n > 1, a(n) = A009194(A156552(n)). %H A324396 Antti Karttunen, <a href="/A324396/b324396.txt">Table of n, a(n) for n = 1..4473</a> %H A324396 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A324396 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A324396 a(1) = 0; for n > 1, a(n) = A009194(A156552(n)). %F A324396 a(n) = gcd(A156552(n), A323243(n)). %o A324396 (PARI) %o A324396 A009194(n) = gcd(n, sigma(n)); %o A324396 A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; %o A324396 A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n)))); %o A324396 A324396(n) = if(1==n,0,A009194(A156552(n))); %Y A324396 Cf. A009194, A156552, A323243, A323244, A324051, A324394, A324397, A324398. %K A324396 nonn %O A324396 1,9 %A A324396 _Antti Karttunen_, Mar 05 2019