cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A368806 a(n) = Product_{i=1..j, j=1..k, k=1..n} i*j*k.

Original entry on oeis.org

1, 1, 64, 60466176, 504857282956046106624, 46005119909369701466112000000000000000000000, 101230154592156481700985865260692304243040378536591360000000000000000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Product[Product[i*j*k, {i,1,j}], {j,1,k}], {k,1,n}], {n, 0, 6}]
    Table[Product[k^(k*(k+1)/2) * k!^(k+1), {k, 1, n}], {n, 0, 6}]

Formula

a(n) = Product_{k=1..n} k^(k*(k+1)/2) * k!^(k+1).
a(n) ~ (2*Pi)^(n^2/4 + 3*n/4 + 1/2) * n^(n^3/2 + 7*n^2/4 + 7*n/4 + 1/2) / exp(n^3/2 + 3*n^2/2 + 23*n/24 - 1/8).

A368807 a(n) = Product_{k1=1..k2, k2=1..k3, k3=1..k4, k4=1..n} (k1 + k2 + k3 + k4).

Original entry on oeis.org

1, 4, 6720, 19313344512000, 20823306760116073109787770880000000, 127561365195629861072526583814017987280486114546255888016998400000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Product[Product[Product[k1 + k2 + k3 + k4, {k1, 1, k2}], {k2, 1, k3}], {k3, 1, k4}], {k4, 1, n}], {n, 0, 8}]

Formula

Limit_{n->oo} (a(n)^(1/n^4)) / n^(1/24) = 2^(19/18) / (3^(9/16) * exp(25/288)) = 1.0272449259573526742294526185907726081185052788527643...
Showing 1-2 of 2 results.