This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324457 #30 Oct 05 2024 16:29:38 %S A324457 24,45,48,72,96,120,144,189,192,216,224,225,231,240,288,315,320,325, %T A324457 336,352,360,384,405,432,450,480,525,540,560,561,567,576,594,600,637, %U A324457 648,672,704,720,768,792,819,825,832,850,864,891,896,924,945,960,975,980 %N A324457 Numbers m > 1 such that every prime divisor p of m satisfies s_p(m) >= p. %C A324457 The function s_p(m) gives the sum of the base-p digits of m. %C A324457 The sequence is infinite, since it contains A324315, and thus the Carmichael numbers A002997. %C A324457 Being a subsequence of A324459, a term m has the following properties: %C A324457 m must have at least 2 prime factors. If m = p1^e1 * p2^e2 with two primes p1 and p2, then e1 + e2 >= 3. %C A324457 Each prime factor p of m satisfies the inequalities p < m^(1/(ord_p(m)+1)) <= sqrt(m), where ord_p(m) gives the maximum exponent e such that p^e divides m. %C A324457 In the terminology of A324459, the prime factorization of m equals an s-decomposition of m. %C A324457 See Kellner 2019. %C A324457 a(n) is a Carmichael number A002997 iff a(n) is squarefree and s_p(a(n)) == 1 (mod p-1) for every prime factor p of a(n). See Kellner and Sondow 2019. - _Jonathan Sondow_, Mar 16 2019 %H A324457 Amiram Eldar, <a href="/A324457/b324457.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..477 from Bernd C. Kellner) %H A324457 Bernd C. Kellner, <a href="https://doi.org/10.5281/zenodo.10963985">On primary Carmichael numbers</a>, Integers 22 (2022), Article #A38, 39 pp.; arXiv:<a href="https://arxiv.org/abs/1902.11283">1902.11283</a> [math.NT], 2019. %H A324457 Bernd C. Kellner and Jonathan Sondow, <a href="https://doi.org/10.5281/zenodo.10816833">On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits</a>, Integers 21 (2021), Article #A52, 21 pp.; arXiv:<a href="https://arxiv.org/abs/1902.10672">1902.10672</a> [math.NT], 2019. %e A324457 The number 45 has the prime factors 3 and 5. Since s_3(45) = 3 and s_5(45) = 5, 45 is a member. %t A324457 s[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]]; %t A324457 f[n_] := AllTrue[Transpose[FactorInteger[n]][[1]], s[n, #] >= # &]; %t A324457 Select[Range[10^4], f[#] &] %Y A324457 Subsequences are A002997, A324315, and A324458. %Y A324457 Subsequence of A324459 and A324857. %Y A324457 Cf. A324316, A324455, A324456, A324460. %K A324457 nonn,base %O A324457 1,1 %A A324457 _Bernd C. Kellner_, Feb 28 2019