cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324484 Inflation orbit counts b^{(2)}_n for 2D cut and project patterns with tau-inflation.

This page as a plain text file.
%I A324484 #20 Apr 30 2021 02:57:21
%S A324484 1,0,15,24,120,240,840,2000,5760,14520,39600,102120,271440,706440,
%T A324484 1860360,4860000,12752040,33356160,87403800,228750960,599073720,
%U A324484 1568199600,4106118240,10749438000,28143753000,73679945040,192900147840,505015608720,1322157322200,3461443490760
%N A324484 Inflation orbit counts b^{(2)}_n for 2D cut and project patterns with tau-inflation.
%H A324484 Seiichi Manyama, <a href="/A324484/b324484.txt">Table of n, a(n) for n = 1..2000</a>
%H A324484 M. Baake, J. Hermisson, and P. Pleasants, <a href="http://dx.doi.org/10.1088/0305-4470/30/9/016">The torus parametrization of quasiperiodic LI-classes</a>, J. Phys. A 30 (1997), no. 9, 3029-3056. See Table 4.
%F A324484 a(n) = Sum_{d|n} mu(n/d) * A001350(d)^2 = Sum_{d|n} mu(n/d) * A152152(d). - _Seiichi Manyama_, Apr 29 2021
%o A324484 (PARI) a001350(n) = fibonacci(n+1)+fibonacci(n-1)-1-(-1)^n;
%o A324484 a(n) = sumdiv(n, d, moebius(n/d)*a001350(d)^2); \\ _Seiichi Manyama_, Apr 29 2021
%Y A324484 Cf. A001350, A031367, A152152, A324485.
%K A324484 nonn
%O A324484 1,3
%A A324484 _N. J. A. Sloane_, Mar 12 2019
%E A324484 More terms from _Seiichi Manyama_, Apr 29 2021