cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324488 Inflation orbit counts b^{(3)}_n for Danzer's F-type tiling and other 3D cut and project patterns with tau-inflation.

This page as a plain text file.
%I A324488 #19 Apr 30 2021 02:57:25
%S A324488 1,0,63,124,1330,4032,24388,91000,438912,1770230,7880598,32763780,
%T A324488 141420760,594798932,2537715150,10720674000,45537538410,192699485568,
%U A324488 817138135548,3460078306440,14662949297724,62103832718202,263115950765038,1114512523173000,4721424167330750
%N A324488 Inflation orbit counts b^{(3)}_n for Danzer's F-type tiling and other 3D cut and project patterns with tau-inflation.
%H A324488 Seiichi Manyama, <a href="/A324488/b324488.txt">Table of n, a(n) for n = 1..1000</a>
%H A324488 M. Baake, J. Hermisson, and P. Pleasants, <a href="http://dx.doi.org/10.1088/0305-4470/30/9/016">The torus parametrization of quasiperiodic LI-classes</a>, J. Phys. A 30 (1997), no. 9, 3029-3056. See Tables 5 and 6.
%F A324488 a(n) = Sum_{d|n} mu(n/d) * A001350(d)^3 = Sum_{d|n} mu(n/d) * A324487(d). - _Seiichi Manyama_, Apr 29 2021
%o A324488 (PARI) a001350(n) = fibonacci(n+1)+fibonacci(n-1)-1-(-1)^n;
%o A324488 a(n) = sumdiv(n, d, moebius(n/d)*a001350(d)^3); \\ _Seiichi Manyama_, Apr 29 2021
%Y A324488 Cf. A001350, A031367, A324487, A324489.
%K A324488 nonn
%O A324488 1,3
%A A324488 _N. J. A. Sloane_, Mar 12 2019
%E A324488 More terms from _Seiichi Manyama_, Apr 29 2021