This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324515 #10 Nov 19 2023 23:44:00 %S A324515 2,3,5,7,11,12,13,17,18,19,23,29,31,37,40,41,43,45,47,53,59,61,67,71, %T A324515 73,75,79,83,89,97,100,101,103,107,109,112,113,120,127,131,137,139, %U A324515 149,151,157,163,167,173,175,179,180,181,189,191,193,197,199,211,223 %N A324515 Numbers > 1 where the maximum prime index minus the minimum prime index equals the number of prime factors minus the number of distinct prime factors. %C A324515 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A324515 Also Heinz numbers of the integer partitions enumerated by A324516. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A324515 Robert Israel, <a href="/A324515/b324515.txt">Table of n, a(n) for n = 1..10000</a> %F A324515 A243055(a(n)) = A061395(a(n)) - A055396(a(n)) = A001222(a(n)) - A001221(a(n)) = A046660(a(n)). %e A324515 The sequence of terms together with their prime indices begins: %e A324515 2: {1} %e A324515 3: {2} %e A324515 5: {3} %e A324515 7: {4} %e A324515 11: {5} %e A324515 12: {1,1,2} %e A324515 13: {6} %e A324515 17: {7} %e A324515 18: {1,2,2} %e A324515 19: {8} %e A324515 23: {9} %e A324515 29: {10} %e A324515 31: {11} %e A324515 37: {12} %e A324515 40: {1,1,1,3} %e A324515 41: {13} %e A324515 43: {14} %e A324515 45: {2,2,3} %p A324515 filter:= proc(n) local F, Inds, t; %p A324515 if isprime(n) then return true fi; %p A324515 F:= ifactors(n)[2]; %p A324515 Inds:= map(numtheory:-pi, F[..,1]); %p A324515 max(Inds) - min(Inds) = add(t[2],t=F) - nops(F) %p A324515 end proc: %p A324515 select(filter, [$2..300]); # _Robert Israel_, Nov 19 2023 %t A324515 Select[Range[2,100],With[{f=FactorInteger[#]},PrimePi[f[[-1,1]]]-PrimePi[f[[1,1]]]==Total[Last/@f]-Length[f]]&] %Y A324515 Cf. A001221, A001222, A006141, A046660, A047993, A055396, A056239, A061395, A106529, A112798, A243055. %Y A324515 Cf. A324516, A324517, A324519, A324521, A324522, A324560, A324562. %K A324515 nonn %O A324515 1,1 %A A324515 _Gus Wiseman_, Mar 06 2019