This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324517 #4 Mar 07 2019 23:25:16 %S A324517 4,24,27,36,54,80,200,224,240,360,405,500,540,600,625,672,675,704,784, %T A324517 810,900,1008,1120,1125,1250,1350,1500,1512,1664,1701,1875,2112,2250, %U A324517 2268,2352,2744,2800,3168,3360,3402,3520,3528,3750,3872,3920,3969,4352,4752 %N A324517 Numbers > 1 where the maximum prime index equals the number of prime factors minus the number of distinct prime factors. %C A324517 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A324517 Also Heinz numbers of the integer partitions enumerated by A324518. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %F A324517 A061395(a(n)) = A001222(a(n)) - A001221(a(n)) = A046660(a(n)). %e A324517 The sequence of terms together with their prime indices begins: %e A324517 4: {1,1} %e A324517 24: {1,1,1,2} %e A324517 27: {2,2,2} %e A324517 36: {1,1,2,2} %e A324517 54: {1,2,2,2} %e A324517 80: {1,1,1,1,3} %e A324517 200: {1,1,1,3,3} %e A324517 224: {1,1,1,1,1,4} %e A324517 240: {1,1,1,1,2,3} %e A324517 360: {1,1,1,2,2,3} %e A324517 405: {2,2,2,2,3} %e A324517 500: {1,1,3,3,3} %e A324517 540: {1,1,2,2,2,3} %e A324517 600: {1,1,1,2,3,3} %e A324517 625: {3,3,3,3} %e A324517 672: {1,1,1,1,1,2,4} %e A324517 675: {2,2,2,3,3} %e A324517 704: {1,1,1,1,1,1,5} %e A324517 784: {1,1,1,1,4,4} %e A324517 810: {1,2,2,2,2,3} %e A324517 900: {1,1,2,2,3,3} %t A324517 Select[Range[2,1000],With[{f=FactorInteger[#]},PrimePi[f[[-1,1]]]==Total[Last/@f]-Length[f]]&] %Y A324517 Cf. A001221, A001222, A046660, A056239, A061395, A112798, A243055, A256617. %Y A324517 Cf. A324515, A324518, A324519, A324521, A324522, A324560, A324562. %K A324517 nonn %O A324517 1,1 %A A324517 _Gus Wiseman_, Mar 06 2019