cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324520 Number of integer partitions of n > 0 where the minimum part equals the number of parts minus the number of distinct parts.

This page as a plain text file.
%I A324520 #5 Mar 07 2019 23:25:42
%S A324520 0,1,0,1,2,2,3,3,7,6,11,12,15,21,25,31,43,49,58,79,89,108,135,165,190,
%T A324520 232,279,328,387,461,536,650,743,870,1029,1202,1381,1613,1864,2163,
%U A324520 2505,2875,3292,3829,4367,5001,5746,6538,7462,8533,9714,11008,12527,14196
%N A324520 Number of integer partitions of n > 0 where the minimum part equals the number of parts minus the number of distinct parts.
%C A324520 The Heinz numbers of these integer partitions are given by A324519.
%e A324520 The a(2) = 1 through a(11) = 11 integer partitions:
%e A324520   (11)  (211)  (221)  (222)  (331)   (611)   (441)   (811)   (551)
%e A324520                (311)  (411)  (511)   (3221)  (711)   (3322)  (911)
%e A324520                              (3211)  (4211)  (3222)  (4222)  (3332)
%e A324520                                              (3321)  (5221)  (4331)
%e A324520                                              (4221)  (5311)  (4421)
%e A324520                                              (4311)  (6211)  (5222)
%e A324520                                              (5211)          (5411)
%e A324520                                                              (6221)
%e A324520                                                              (6311)
%e A324520                                                              (7211)
%e A324520                                                              (43211)
%t A324520 Table[Length[Select[IntegerPartitions[n],Min@@#==Length[#]-Length[Union[#]]&]],{n,30}]
%Y A324520 Cf. A003114, A006141, A039900, A046660, A047993, A064174, A090858, A133121.
%Y A324520 Cf. A324516, A324518, A324519, A324520.
%K A324520 nonn
%O A324520 1,5
%A A324520 _Gus Wiseman_, Mar 06 2019