This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324522 #9 Mar 10 2019 19:19:13 %S A324522 2,9,15,21,33,39,51,57,69,87,93,111,123,125,129,141,159,175,177,183, %T A324522 201,213,219,237,245,249,267,275,291,303,309,321,325,327,339,381,385, %U A324522 393,411,417,425,447,453,455,471,475,489,501,519,537,543,573,575,579,591 %N A324522 Numbers > 1 where the minimum prime index is equal to the number of prime factors counted with multiplicity. %C A324522 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A324522 Also Heinz numbers of integer partitions where the minimum part is equal to the number of parts (A006141). The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A324522 Alois P. Heinz, <a href="/A324522/b324522.txt">Table of n, a(n) for n = 1..10000</a> %F A324522 A055396(a(n)) = A001222(a(n)). %e A324522 The sequence of terms together with their prime indices begins: %e A324522 2: {1} %e A324522 9: {2,2} %e A324522 15: {2,3} %e A324522 21: {2,4} %e A324522 33: {2,5} %e A324522 39: {2,6} %e A324522 51: {2,7} %e A324522 57: {2,8} %e A324522 69: {2,9} %e A324522 87: {2,10} %e A324522 93: {2,11} %e A324522 111: {2,12} %e A324522 123: {2,13} %e A324522 125: {3,3,3} %e A324522 129: {2,14} %e A324522 141: {2,15} %e A324522 159: {2,16} %e A324522 175: {3,3,4} %p A324522 with(numtheory): %p A324522 q:= n-> is(pi(min(factorset(n)))=bigomega(n)): %p A324522 select(q, [$2..600])[]; # _Alois P. Heinz_, Mar 07 2019 %t A324522 Select[Range[2,100],PrimePi[FactorInteger[#][[1,1]]]==PrimeOmega[#]&] %Y A324522 Cf. A001222, A006141, A055396, A056239, A106529, A112798, A256617. %Y A324522 Cf. A324515, A324517, A324519, A324521, A324522, A324560, A324562. %K A324522 nonn %O A324522 1,1 %A A324522 _Gus Wiseman_, Mar 06 2019