This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324523 #33 May 05 2020 05:33:21 %S A324523 1,1,74,31770,42687960,134092967400,831428629796160, %T A324523 9095459029214397840,162061482211484681105280, %U A324523 4429476877635332233622271360,177245727799376537644530489120000,10002691163041098923871227379695673600,772102922309973700712743861257373871078400 %N A324523 Number of colored set partitions of [2n] where elements of subsets have distinct colors and exactly n colors are used. %H A324523 Alois P. Heinz, <a href="/A324523/b324523.txt">Table of n, a(n) for n = 0..139</a> %H A324523 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %F A324523 a(n) = A323128(2n,n). %p A324523 b:= proc(n, k) option remember; `if`(n=0, 1, add(k!/(k-j)! %p A324523 *binomial(n-1, j-1)*b(n-j, k), j=1..min(k, n))) %p A324523 end: %p A324523 a:= n-> add(b(2*n, n-i)*(-1)^i*binomial(n, i), i=0..n): %p A324523 seq(a(n), n=0..15); %t A324523 b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[k!/(k-j)! Binomial[n - 1, j - 1]* b[n - j, k], {j, 1, Min[k, n]}]]; %t A324523 a[n_] := Sum[b[2n, n - i] (-1)^i Binomial[n, i], {i, 0, n}]; %t A324523 a /@ Range[0, 15] (* _Jean-François Alcover_, May 05 2020, after Maple *) %Y A324523 Cf. A323128. %K A324523 nonn %O A324523 0,3 %A A324523 _Alois P. Heinz_, Sep 03 2019