cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324524 Numbers where every prime index divides its multiplicity in the prime factorization. Numbers divisible by a power of prime(k)^k for each prime index k.

This page as a plain text file.
%I A324524 #27 Aug 04 2022 15:09:20
%S A324524 1,2,4,8,9,16,18,32,36,64,72,81,125,128,144,162,250,256,288,324,500,
%T A324524 512,576,648,729,1000,1024,1125,1152,1296,1458,2000,2048,2250,2304,
%U A324524 2401,2592,2916,4000,4096,4500,4608,4802,5184,5832,6561,8000,8192,9000,9216
%N A324524 Numbers where every prime index divides its multiplicity in the prime factorization. Numbers divisible by a power of prime(k)^k for each prime index k.
%C A324524 These are a kind of self-describing numbers (cf. A001462, A304679).
%C A324524 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The prime signature of a number is the multiset of multiplicities (or exponents) in its prime factorization.
%C A324524 Also Heinz numbers of integer partitions in which every part divides its multiplicity (counted by A001156). The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%C A324524 Also products of elements of A062457.
%H A324524 Amiram Eldar, <a href="/A324524/b324524.txt">Table of n, a(n) for n = 1..10000</a>
%F A324524 Closed under multiplication.
%F A324524 Sum_{n>=1} 1/a(n) = Product_{k>=1} 1/(1-prime(k)^(-k)) = 2.26910478689594012492... - _Amiram Eldar_, Sep 30 2020
%e A324524 The sequence of terms together with their prime indices begins as follows. For example, we have 18: {1,2,2} because 18 = prime(1) * prime(2) * prime(2).
%e A324524     1: {}
%e A324524     2: {1}
%e A324524     4: {1,1}
%e A324524     8: {1,1,1}
%e A324524     9: {2,2}
%e A324524    16: {1,1,1,1}
%e A324524    18: {1,2,2}
%e A324524    32: {1,1,1,1,1}
%e A324524    36: {1,1,2,2}
%e A324524    64: {1,1,1,1,1,1}
%e A324524    72: {1,1,1,2,2}
%e A324524    81: {2,2,2,2}
%e A324524   125: {3,3,3}
%e A324524   128: {1,1,1,1,1,1,1}
%e A324524   144: {1,1,1,1,2,2}
%e A324524   162: {1,2,2,2,2}
%e A324524   250: {1,3,3,3}
%e A324524   256: {1,1,1,1,1,1,1,1}
%p A324524 q:= n-> andmap(i-> irem(i[2], numtheory[pi](i[1]))=0, ifactors(n)[2]):
%p A324524 select(q, [$1..10000])[];  # _Alois P. Heinz_, Mar 08 2019
%t A324524 Select[Range[1000],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>Divisible[k,PrimePi[p]]]&]
%t A324524 v = Join[{1}, Prime[(r = Range[10])]^r]; n = Length[v]; vmax = 10^4; s = {1}; Do[v1 = v[[k]]; rmax = Floor[Log[v1, vmax]]; s1 = v1^Range[0, rmax]; s2 = Select[Union[Flatten[Outer[Times, s, s1]]], # <= vmax &]; s = Union[s, s2], {k, 2, n}]; Length[s] (* _Amiram Eldar_, Sep 30 2020 *)
%Y A324524 Cf. A001156, A033461, A056239, A062457, A066328, A072873, A112798, A118914 (prime signature), A124010, A181819, A276078, A304679.
%Y A324524 Cf. A109298, A324525, A324570, A324571, A324572, A324587, A324588.
%Y A324524 Range of values of A090884.
%Y A324524 Sequences related to self-description: A000002, A001462, A079000, A079254, A276625, A304360.
%K A324524 nonn
%O A324524 1,2
%A A324524 _Gus Wiseman_, Mar 07 2019