cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324527 a(n) = the smallest number m such that gcd(sigma(m), pod(m)) = n where sigma(k) = the sum of the divisors of k (A000203) and pod(k) = the product of the divisors of k (A007955).

This page as a plain text file.
%I A324527 #7 Sep 08 2022 08:46:24
%S A324527 1,10,15,12,95,180,91,56,51,40,473,6,117,980,135,70,1139,90,703,290,
%T A324527 861,26378,3151,54,745,468,255,2156,5017,26100,775,124,1419,2176,4865,
%U A324527 96,2701,26714,585,190,6683,65268,11051,5632,435,144946,13207,42,679,5800
%N A324527 a(n) = the smallest number m such that gcd(sigma(m), pod(m)) = n where sigma(k) = the sum of the divisors of k (A000203) and pod(k) = the product of the divisors of k (A007955).
%C A324527 a(n) = the smallest number m such that A306682(m) = n.
%e A324527 For n=2; a(2) = 10 because gcd(sigma(10), pod(10)) = gcd (18, 100) = 2 and 10 is the smallest.
%o A324527 (Magma) [Min([n: n in[1..10^5] | GCD(SumOfDivisors(n), &*[d: d in Divisors(n)]) eq k]): k in [1..45]]
%o A324527 (PARI) f(n) = my(d=divisors(n)); gcd(vecsum(d), vecprod(d)); \\ A306682
%o A324527 a(n) = {my(k=1); while (f(k) != n, k++); k;} \\ _Michel Marcus_, Mar 05 2019
%Y A324527 Cf. A000005, A000203, A007955, A074391, A306682.
%K A324527 nonn
%O A324527 1,2
%A A324527 _Jaroslav Krizek_, Mar 05 2019