This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324542 #9 Mar 07 2019 23:28:50 %S A324542 0,1,1,3,1,4,1,4,3,11,1,3,1,16,4,16,1,5,1,4,11,46,1,8,3,82,4,27,1,10, %T A324542 1,8,16,174,4,20,1,256,46,32,1,4,1,17,3,798,1,8,3,15,82,45,1,12,11,20, %U A324542 174,1300,1,2,1,2734,4,72,16,27,1,125,256,8,1,20,1,4354,5,363,4,25,1,8,16,10926,1,53,46,20518,798,168,1,35,11,317 %N A324542 Möbius transform of A324118, where A324118(n) = A000593(A156552(n)). %C A324542 The first three zeros after a(1) occur at n = 192, 288, 3645. %C A324542 The first negative term is a(150) = -1. There are 184 negative terms among the first 4473 terms. %H A324542 Antti Karttunen, <a href="/A324542/b324542.txt">Table of n, a(n) for n = 1..4473</a> %H A324542 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A324542 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A324542 a(n) = Sum_{d|n} A008683(n/d) * A324118(d). %o A324542 (PARI) %o A324542 A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; %o A324542 A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n)))); %o A324542 A246277(n) = { if(1==n, 0, while((n%2), n = A064989(n)); (n/2)); }; %o A324542 A322993(n) = A156552(2*A246277(n)); %o A324542 memoA324118 = Map(); %o A324542 A324118(n) = if(1==n, 0, my(v); if(mapisdefined(memoA324118,n,&v), v, v=sigma(A322993(n)); mapput(memoA324118,n,v); (v))); %o A324542 A324542(n) = sumdiv(n,d,moebius(n/d)*A324118(d)); %Y A324542 Cf. A000593, A008683, A156552, A324118, A324543. %Y A324542 Cf. also A322993, A322994. %K A324542 sign %O A324542 1,4 %A A324542 _Antti Karttunen_, Mar 07 2019