This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324544 #12 Mar 08 2019 20:14:40 %S A324544 1,1,1,1,1,6,1,1,1,2,1,4,1,2,3,1,1,3,1,2,1,2,1,12,1,2,1,28,1,6,1,1,3, %T A324544 2,1,1,1,2,3,10,1,6,1,4,1,2,1,4,1,1,1,2,1,6,1,8,1,2,1,12,1,2,1,1,1,18, %U A324544 1,2,15,2,1,3,1,2,3,4,1,6,1,2,3,2,1,4,1,2,3,4,1,3,1,4,1,2,1,12,1,1,1,1,1,6,1,2,1 %N A324544 a(n) = A009194(A250246(n)) = gcd(A250246(n), A324545(n)). %C A324544 Fixed points are: 1, 6, 28, 120, 496, 8128, etc, %C A324544 Positions where a(n) == A250246(n) are: 1, 6, 28, 120, 496, 864, 8128, 11424, 15240, ..., which is sequence A250245(A007691(n)) sorted into ascending order. %H A324544 Antti Karttunen, <a href="/A324544/b324544.txt">Table of n, a(n) for n = 1..65537</a> %F A324544 a(n) = A009194(A250246(n)) = gcd(A250246(n), A324545(n)). %F A324544 a(n) = A324394(A252754(n)). %o A324544 (PARI) %o A324544 up_to = 65537; %o A324544 ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; }; %o A324544 A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639 %o A324544 A055396(n) = if(1==n,0,primepi(A020639(n))); %o A324544 v078898 = ordinal_transform(vector(up_to,n,A020639(n))); %o A324544 A078898(n) = v078898[n]; %o A324544 A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961 %o A324544 A250246(n) = if(1==n,n,my(k = 2*A250246(A078898(n)), r = A055396(n)); if(1==r, k, while(r>1, k = A003961(k); r--); (k))); %o A324544 A009194(n) = gcd(n, sigma(n)); %o A324544 A324544(n) = A009194(A250246(n)); %Y A324544 Cf. A007691, A009194, A250246, A252754, A324394, A324545, A324546. %Y A324544 Differs from A009194 for the first time at n=39. Here a(39) = 3. %K A324544 nonn %O A324544 1,6 %A A324544 _Antti Karttunen_, Mar 06 2019