cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324545 An analog of sigma (A000203) for nonstandard factorization based on the sieve of Eratosthenes (A083221).

This page as a plain text file.
%I A324545 #16 Mar 08 2019 20:14:49
%S A324545 1,3,4,7,6,12,8,15,13,18,12,28,14,24,24,31,18,39,20,42,40,36,24,60,31,
%T A324545 42,32,56,30,72,32,63,78,54,48,91,38,60,48,90,42,120,44,84,121,72,48,
%U A324545 124,57,93,124,98,54,96,156,120,104,90,60,168,62,96,56,127,72,234,68,126,240,144,72,195,74,114,72,140,96,144,80
%N A324545 An analog of sigma (A000203) for nonstandard factorization based on the sieve of Eratosthenes (A083221).
%H A324545 Antti Karttunen, <a href="/A324545/b324545.txt">Table of n, a(n) for n = 1..16384</a>
%H A324545 Antti Karttunen, <a href="/A324545/a324545.txt">Data supplement: n, a(n) computed for n = 1..65537</a>
%H A324545 <a href="/index/Si#sieve">Index entries for sequences generated by sieves</a>
%H A324545 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F A324545 a(n) = A000203(A250246(n)) = A324535(n) + A250246(n).
%F A324545 a(1) = 1; for n > 1, let p = A020639(n) [the smallest prime factor of n], then a(n) = (((p^(1+A302045(n)))-1) / (p-1)) * a(A302044(n)).
%F A324545 a(n) = A324054(A252754(n)).
%o A324545 (PARI)
%o A324545 up_to = 65537;
%o A324545 ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
%o A324545 A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
%o A324545 A055396(n) = if(1==n,0,primepi(A020639(n)));
%o A324545 v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
%o A324545 A078898(n) = v078898[n];
%o A324545 A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
%o A324545 A250246(n) = if(1==n,n,my(k = 2*A250246(A078898(n)), r = A055396(n)); if(1==r, k, while(r>1, k = A003961(k); r--); (k)));
%o A324545 A324545(n) = sigma(A250246(n));
%o A324545 (PARI)
%o A324545 \\ Or alternatively, using also A078898 defined above:
%o A324545 A000265(n) = (n/2^valuation(n, 2));
%o A324545 A001511(n) = 1+valuation(n,2);
%o A324545 A302045(n) = A001511(A078898(n));
%o A324545 A302044(n) = { my(c = A000265(A078898(n))); if(1==c,1,my(p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); (k*p)); };
%o A324545 A324545(n) = if(1==n,n,my(p=A020639(n)); (((p^(A302045(n)+1))-1)/(p-1))*A324545(A302044(n)));
%Y A324545 Cf. A000203, A020639, A078898, A250246, A252754, A302044, A302045, A324054, A324535, A324544, A324546.
%Y A324545 Cf. also A302051, A302055, A323243.
%K A324545 nonn
%O A324545 1,2
%A A324545 _Antti Karttunen_, Mar 06 2019