This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324561 #7 Mar 07 2019 19:56:58 %S A324561 2,4,6,7,8,10,11,12,13,14,16,18,20,21,22,23,24,26,28,29,30,31,32,33, %T A324561 34,35,36,38,39,40,42,43,44,46,47,48,49,50,52,53,54,55,56,58,60,62,63, %U A324561 64,65,66,67,68,69,70,71,72,73,74,76,77,78,80,82,84,86,87 %N A324561 Numbers with at least one prime index equal to 0, 1, or 4 modulo 5. %C A324561 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A324561 Also Heinz numbers of the integer partitions counted by A039900. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %e A324561 The sequence of terms together with their prime indices begins: %e A324561 2: {1} %e A324561 4: {1,1} %e A324561 6: {1,2} %e A324561 7: {4} %e A324561 8: {1,1,1} %e A324561 10: {1,3} %e A324561 11: {5} %e A324561 12: {1,1,2} %e A324561 13: {6} %e A324561 14: {1,4} %e A324561 16: {1,1,1,1} %e A324561 18: {1,2,2} %e A324561 20: {1,1,3} %e A324561 21: {2,4} %e A324561 22: {1,5} %e A324561 23: {9} %e A324561 24: {1,1,1,2} %p A324561 with(numtheory): %p A324561 q:= n-> is(irem(pi(min(factorset(n))), 5) in {0, 1, 4}): %p A324561 select(q, [$2..100])[]; # _Alois P. Heinz_, Mar 07 2019 %t A324561 Select[Range[100],Intersection[Mod[If[#==1,{},PrimePi/@First/@FactorInteger[#]],5],{0,1,4}]!={}&] %Y A324561 Cf. A008854, A039900, A055396, A056239, A061395, A106529, A112798. %Y A324561 Cf. A324519, A324521, A324522, A324560, A324561, A324562. %K A324561 nonn %O A324561 1,1 %A A324561 _Gus Wiseman_, Mar 06 2019