This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324562 #11 Feb 07 2021 06:25:50 %S A324562 2,3,5,6,7,9,10,11,13,14,15,17,19,20,21,22,23,25,26,28,29,30,31,33,34, %T A324562 35,37,38,39,41,42,43,44,45,46,47,49,50,51,52,53,55,56,57,58,59,61,62, %U A324562 63,65,66,67,68,69,70,71,73,74,75,76,77,78,79,82,83,84,85 %N A324562 Numbers > 1 where the maximum prime index is greater than or equal to the number of prime factors counted with multiplicity. %C A324562 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A324562 Also Heinz numbers of the integer partitions enumerated by A064174. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A324562 Amiram Eldar, <a href="/A324562/b324562.txt">Table of n, a(n) for n = 1..10000</a> %F A324562 A061395(a(n)) >= A001222(a(n)). %e A324562 The sequence of terms together with their prime indices begins: %e A324562 2: {1} %e A324562 3: {2} %e A324562 5: {3} %e A324562 6: {1,2} %e A324562 7: {4} %e A324562 9: {2,2} %e A324562 10: {1,3} %e A324562 11: {5} %e A324562 13: {6} %e A324562 14: {1,4} %e A324562 15: {2,3} %e A324562 17: {7} %e A324562 19: {8} %e A324562 20: {1,1,3} %e A324562 21: {2,4} %e A324562 22: {1,5} %e A324562 23: {9} %e A324562 25: {3,3} %e A324562 26: {1,6} %e A324562 28: {1,1,4} %p A324562 with(numtheory): %p A324562 q:= n-> is(pi(max(factorset(n)))>=bigomega(n)): %p A324562 select(q, [$2..100])[]; # _Alois P. Heinz_, Mar 07 2019 %t A324562 Select[Range[2,100],PrimePi[FactorInteger[#][[-1,1]]]>=PrimeOmega[#]&] %Y A324562 Cf. A001222, A003114, A055396, A056239, A061395, A064174, A106529, A112798. %Y A324562 Cf. A324517, A324519, A324521, A324522, A324560, A324562. %K A324562 nonn %O A324562 1,1 %A A324562 _Gus Wiseman_, Mar 06 2019