cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324570 Numbers where the sum of distinct prime indices (A066328) is equal to the number of prime factors counted with multiplicity (A001222).

This page as a plain text file.
%I A324570 #11 Apr 13 2019 09:02:31
%S A324570 1,2,9,12,18,40,100,112,125,240,250,352,360,392,405,540,600,672,675,
%T A324570 810,832,900,1008,1125,1350,1372,1500,1512,1701,1875,1936,2112,2176,
%U A324570 2240,2250,2268,2352,2401,3168,3402,3528,3750,3969,4752,4802,4864,4992,5292
%N A324570 Numbers where the sum of distinct prime indices (A066328) is equal to the number of prime factors counted with multiplicity (A001222).
%C A324570 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. For example, 540 = prime(1)^2 * prime(2)^3 * prime(3)^1 has sum of distinct prime indices 1 + 2 + 3 = 6, while the number of prime factors counted with multiplicity is 2 + 3 + 1 = 6, so 540 belongs to the sequence.
%C A324570 Also Heinz numbers of the integer partitions counted by A114638. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%F A324570 A066328(a(n)) = A001222(a(n)).
%e A324570 The sequence of terms together with their prime indices begins:
%e A324570     1: {}
%e A324570     2: {1}
%e A324570     9: {2,2}
%e A324570    12: {1,1,2}
%e A324570    18: {1,2,2}
%e A324570    40: {1,1,1,3}
%e A324570   100: {1,1,3,3}
%e A324570   112: {1,1,1,1,4}
%e A324570   125: {3,3,3}
%e A324570   240: {1,1,1,1,2,3}
%e A324570   250: {1,3,3,3}
%e A324570   352: {1,1,1,1,1,5}
%e A324570   360: {1,1,1,2,2,3}
%e A324570   392: {1,1,1,4,4}
%e A324570   405: {2,2,2,2,3}
%e A324570   540: {1,1,2,2,2,3}
%e A324570   600: {1,1,1,2,3,3}
%e A324570   672: {1,1,1,1,1,2,4}
%p A324570 with(numtheory):
%p A324570 q:= n-> is(add(pi(p), p=factorset(n))=bigomega(n)):
%p A324570 select(q, [$1..5600])[];  # _Alois P. Heinz_, Mar 07 2019
%t A324570 Select[Range[1000],Total[PrimePi/@First/@FactorInteger[#]]==PrimeOmega[#]&]
%Y A324570 Cf. A001221, A001222, A056239, A066328, A112798, A114638, A117144, A276078.
%Y A324570 Cf. A109298, A324524, A324525, A324570, A324571, A324572.
%K A324570 nonn
%O A324570 1,2
%A A324570 _Gus Wiseman_, Mar 07 2019