cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324571 Numbers whose ordered prime signature is equal to the set of distinct prime indices in decreasing order.

This page as a plain text file.
%I A324571 #10 Mar 10 2019 20:59:28
%S A324571 1,2,9,12,40,112,125,352,360,675,832,1008,2176,2401,3168,3969,4864,
%T A324571 7488,11776,14000,19584,29403,29696,43776,44000,63488,75600,104000,
%U A324571 105984,123201,151552,161051,214375,237600,267264,272000,335872,496125,561600,571392,608000
%N A324571 Numbers whose ordered prime signature is equal to the set of distinct prime indices in decreasing order.
%C A324571 These are a kind of self-describing numbers (cf. A001462, A304679). The increasing case is A109298.
%C A324571 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The ordered prime signature (A124010) is the sequence of multiplicities (or exponents) in a number's prime factorization, taken in order of the prime base.
%C A324571 Also Heinz numbers of the integer partitions counted by A324572. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%C A324571 Each finite set of positive integers determines a unique term with those prime indices. For example, corresponding to {1,2,4,5} is 1397088 = prime(1)^5 * prime(2)^4 * prime(4)^2 * prime(5)^1.
%e A324571 The sequence of terms together with their prime indices begins as follows. For example, we have 40: {1,1,1,3} because 40 = prime(1) * prime(1) * prime(1) * prime(3).
%e A324571       1: {}
%e A324571       2: {1}
%e A324571       9: {2,2}
%e A324571      12: {1,1,2}
%e A324571      40: {1,1,1,3}
%e A324571     112: {1,1,1,1,4}
%e A324571     125: {3,3,3}
%e A324571     352: {1,1,1,1,1,5}
%e A324571     360: {1,1,1,2,2,3}
%e A324571     675: {2,2,2,3,3}
%e A324571     832: {1,1,1,1,1,1,6}
%e A324571    1008: {1,1,1,1,2,2,4}
%e A324571    2176: {1,1,1,1,1,1,1,7}
%e A324571    2401: {4,4,4,4}
%e A324571    3168: {1,1,1,1,1,2,2,5}
%e A324571    3969: {2,2,2,2,4,4}
%e A324571    4864: {1,1,1,1,1,1,1,1,8}
%e A324571    7488: {1,1,1,1,1,1,2,2,6}
%e A324571   11776: {1,1,1,1,1,1,1,1,1,9}
%e A324571   14000: {1,1,1,1,3,3,3,4}
%e A324571   19584: {1,1,1,1,1,1,1,2,2,7}
%t A324571 Select[Range[1000],Reverse[PrimePi/@First/@If[#==1,{},FactorInteger[#]]]==Last/@If[#==1,{},FactorInteger[#]]&]
%Y A324571 Cf. A001156, A033461, A056239, A062457, A109298, A112798, A117144, A118914, A124010, A181819, A276078.
%Y A324571 Cf. A324524, A324525, A324572.
%Y A324571 Sequences related to self-description: A000002, A001462, A079000, A079254, A276625, A304360, A304679.
%K A324571 nonn
%O A324571 1,2
%A A324571 _Gus Wiseman_, Mar 08 2019