cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324572 Number of integer partitions of n whose multiplicities (where if x < y the multiplicity of x is counted prior to the multiplicity of y) are equal to the distinct parts in decreasing order.

This page as a plain text file.
%I A324572 #15 Mar 10 2019 21:00:47
%S A324572 1,1,0,0,2,0,1,0,1,1,2,0,3,0,2,0,4,1,2,1,4,1,3,1,5,3,5,1,6,2,6,1,7,2,
%T A324572 7,2,11,4,8,3,11,5,10,4,13,5,11,5,16,8,14,5,19,8,18,6,22,8,22,7,26,10,
%U A324572 25,8,33,12,29,11,36,13,34,12,40,16,41,14,47,17,45,16,55
%N A324572 Number of integer partitions of n whose multiplicities (where if x < y the multiplicity of x is counted prior to the multiplicity of y) are equal to the distinct parts in decreasing order.
%C A324572 These are a kind of self-describing partitions (cf. A001462, A304679).
%C A324572 The Heinz numbers of these partitions are given by A324571.
%C A324572 The case where the distinct parts are taken in increasing order is counted by A033461, with Heinz numbers given by A109298.
%e A324572 The first 19 terms count the following integer partitions:
%e A324572    1: (1)
%e A324572    4: (22)
%e A324572    4: (211)
%e A324572    6: (3111)
%e A324572    8: (41111)
%e A324572    9: (333)
%e A324572   10: (511111)
%e A324572   10: (322111)
%e A324572   12: (6111111)
%e A324572   12: (4221111)
%e A324572   12: (33222)
%e A324572   14: (71111111)
%e A324572   14: (52211111)
%e A324572   16: (811111111)
%e A324572   16: (622111111)
%e A324572   16: (4444)
%e A324572   16: (442222)
%e A324572   17: (43331111)
%e A324572   18: (9111111111)
%e A324572   18: (7221111111)
%e A324572   19: (533311111)
%t A324572 Table[Length[Select[IntegerPartitions[n],Union[#]==Length/@Split[#]&]],{n,0,30}]
%Y A324572 Cf. A001156, A033461, A109298, A117144, A276078, A324524, A324571.
%Y A324572 Sequences related to self-description: A000002, A001462, A079000, A079254, A276625, A304360.
%K A324572 nonn
%O A324572 0,5
%A A324572 _Gus Wiseman_, Mar 08 2019
%E A324572 More terms from _Alois P. Heinz_, Mar 08 2019