This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324572 #15 Mar 10 2019 21:00:47 %S A324572 1,1,0,0,2,0,1,0,1,1,2,0,3,0,2,0,4,1,2,1,4,1,3,1,5,3,5,1,6,2,6,1,7,2, %T A324572 7,2,11,4,8,3,11,5,10,4,13,5,11,5,16,8,14,5,19,8,18,6,22,8,22,7,26,10, %U A324572 25,8,33,12,29,11,36,13,34,12,40,16,41,14,47,17,45,16,55 %N A324572 Number of integer partitions of n whose multiplicities (where if x < y the multiplicity of x is counted prior to the multiplicity of y) are equal to the distinct parts in decreasing order. %C A324572 These are a kind of self-describing partitions (cf. A001462, A304679). %C A324572 The Heinz numbers of these partitions are given by A324571. %C A324572 The case where the distinct parts are taken in increasing order is counted by A033461, with Heinz numbers given by A109298. %e A324572 The first 19 terms count the following integer partitions: %e A324572 1: (1) %e A324572 4: (22) %e A324572 4: (211) %e A324572 6: (3111) %e A324572 8: (41111) %e A324572 9: (333) %e A324572 10: (511111) %e A324572 10: (322111) %e A324572 12: (6111111) %e A324572 12: (4221111) %e A324572 12: (33222) %e A324572 14: (71111111) %e A324572 14: (52211111) %e A324572 16: (811111111) %e A324572 16: (622111111) %e A324572 16: (4444) %e A324572 16: (442222) %e A324572 17: (43331111) %e A324572 18: (9111111111) %e A324572 18: (7221111111) %e A324572 19: (533311111) %t A324572 Table[Length[Select[IntegerPartitions[n],Union[#]==Length/@Split[#]&]],{n,0,30}] %Y A324572 Cf. A001156, A033461, A109298, A117144, A276078, A324524, A324571. %Y A324572 Sequences related to self-description: A000002, A001462, A079000, A079254, A276625, A304360. %K A324572 nonn %O A324572 0,5 %A A324572 _Gus Wiseman_, Mar 08 2019 %E A324572 More terms from _Alois P. Heinz_, Mar 08 2019