This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324573 #9 Mar 08 2019 20:15:04 %S A324573 0,1,3,3,7,4,15,4,7,6,31,7,63,13,12,7,127,6,255,12,18,18,511,6,15,48, %T A324573 12,18,1023,8,2047,6,39,84,28,12,4095,176,54,8,8191,12,16383,39,15, %U A324573 258,32767,12,31,13,144,54,65535,8,42,12,252,800,131071,15,262143,1302,28,12,91,20,524287,144,528,14,1048575,8,2097151,2736,18 %N A324573 a(1) = 0; for n > 1, a(n) = sigma(A048675(n)). %H A324573 Antti Karttunen, <a href="/A324573/b324573.txt">Table of n, a(n) for n = 1..10000</a> (based on Hans Havermann's prime signature data) %H A324573 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %H A324573 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A324573 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A324573 a(1) = 0; for n > 1, a(n) = A000203(A048675(n)). %o A324573 (PARI) %o A324573 A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; }; %o A324573 A324573(n) = if(1==n,0,sigma(A048675(n))); %Y A324573 Cf. A000203, A048675, A324574, A324575. %Y A324573 Cf. also A277892, A322812, A323243. %K A324573 nonn %O A324573 1,3 %A A324573 _Antti Karttunen_, Mar 08 2019