cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324587 Heinz numbers of integer partitions of n into distinct perfect squares (A033461).

This page as a plain text file.
%I A324587 #9 Apr 13 2019 09:02:14
%S A324587 1,2,7,14,23,46,53,97,106,151,161,194,227,302,311,322,371,419,454,541,
%T A324587 622,661,679,742,827,838,1009,1057,1082,1193,1219,1322,1358,1427,1589,
%U A324587 1619,1654,1879,2018,2114,2143,2177,2231,2386,2437,2438,2741,2854,2933
%N A324587 Heinz numbers of integer partitions of n into distinct perfect squares (A033461).
%C A324587 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%C A324587 Also products of distinct elements of A011757.
%e A324587 The sequence of terms together with their prime indices begins:
%e A324587     1: {}
%e A324587     2: {1}
%e A324587     7: {4}
%e A324587    14: {1,4}
%e A324587    23: {9}
%e A324587    46: {1,9}
%e A324587    53: {16}
%e A324587    97: {25}
%e A324587   106: {1,16}
%e A324587   151: {36}
%e A324587   161: {4,9}
%e A324587   194: {1,25}
%e A324587   227: {49}
%e A324587   302: {1,36}
%e A324587   311: {64}
%e A324587   322: {1,4,9}
%e A324587   371: {4,16}
%e A324587   419: {81}
%e A324587   454: {1,49}
%e A324587   541: {100}
%t A324587 Select[Range[1000],And@@Cases[FactorInteger[#],{p_,k_}:>k==1&&IntegerQ[Sqrt[PrimePi[p]]]]&]
%Y A324587 Cf. A001156, A005117, A011757, A033461, A052335, A056239, A062457, A078135, A112798, A117144, A276078.
%Y A324587 Cf. A109298, A324524, A324525, A324571, A324572, A324588.
%K A324587 nonn
%O A324587 1,2
%A A324587 _Gus Wiseman_, Mar 08 2019