This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324587 #9 Apr 13 2019 09:02:14 %S A324587 1,2,7,14,23,46,53,97,106,151,161,194,227,302,311,322,371,419,454,541, %T A324587 622,661,679,742,827,838,1009,1057,1082,1193,1219,1322,1358,1427,1589, %U A324587 1619,1654,1879,2018,2114,2143,2177,2231,2386,2437,2438,2741,2854,2933 %N A324587 Heinz numbers of integer partitions of n into distinct perfect squares (A033461). %C A324587 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %C A324587 Also products of distinct elements of A011757. %e A324587 The sequence of terms together with their prime indices begins: %e A324587 1: {} %e A324587 2: {1} %e A324587 7: {4} %e A324587 14: {1,4} %e A324587 23: {9} %e A324587 46: {1,9} %e A324587 53: {16} %e A324587 97: {25} %e A324587 106: {1,16} %e A324587 151: {36} %e A324587 161: {4,9} %e A324587 194: {1,25} %e A324587 227: {49} %e A324587 302: {1,36} %e A324587 311: {64} %e A324587 322: {1,4,9} %e A324587 371: {4,16} %e A324587 419: {81} %e A324587 454: {1,49} %e A324587 541: {100} %t A324587 Select[Range[1000],And@@Cases[FactorInteger[#],{p_,k_}:>k==1&&IntegerQ[Sqrt[PrimePi[p]]]]&] %Y A324587 Cf. A001156, A005117, A011757, A033461, A052335, A056239, A062457, A078135, A112798, A117144, A276078. %Y A324587 Cf. A109298, A324524, A324525, A324571, A324572, A324588. %K A324587 nonn %O A324587 1,2 %A A324587 _Gus Wiseman_, Mar 08 2019