This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324588 #8 Apr 13 2019 09:01:27 %S A324588 1,2,4,7,8,14,16,23,28,32,46,49,53,56,64,92,97,98,106,112,128,151,161, %T A324588 184,194,196,212,224,227,256,302,311,322,343,368,371,388,392,419,424, %U A324588 448,454,512,529,541,604,622,644,661,679,686,736,742,776,784,827,838 %N A324588 Heinz numbers of integer partitions of n into perfect squares (A001156). %C A324588 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %C A324588 Also products of elements of A011757. %e A324588 The sequence of terms together with their prime indices begins: %e A324588 1: {} %e A324588 2: {1} %e A324588 4: {1,1} %e A324588 7: {4} %e A324588 8: {1,1,1} %e A324588 14: {1,4} %e A324588 16: {1,1,1,1} %e A324588 23: {9} %e A324588 28: {1,1,4} %e A324588 32: {1,1,1,1,1} %e A324588 46: {1,9} %e A324588 49: {4,4} %e A324588 53: {16} %e A324588 56: {1,1,1,4} %e A324588 64: {1,1,1,1,1,1} %e A324588 92: {1,1,9} %e A324588 97: {25} %e A324588 98: {1,4,4} %t A324588 Select[Range[100],And@@Cases[FactorInteger[#],{p_,_}:>IntegerQ[Sqrt[PrimePi[p]]]]&] %Y A324588 Cf. A001156, A011757, A033461, A052335, A056239, A062457, A078135, A112798, A117144, A118914, A276078. %Y A324588 Cf. A109298, A324524, A324525, A324571, A324572, A324587. %K A324588 nonn %O A324588 1,2 %A A324588 _Gus Wiseman_, Mar 08 2019